Preface

This manual comprehensively introduces the debugging, programming and application methods of HNC-8 CNC controller, and is the basic manual for users to quickly learn and use this system. The update and upgrade of this manual are authorized and organized by Wuhan Huazhong Numerical Control Co., Ltd (HCNC). Without the authorization or written permission of the company, no unit or individual has the right to modify the contents of this manual, and the company shall not be responsible for the losses caused by that.

In the manual of HNC-8 series CNC controller, we try our best to describe various events related to the application of this controller. Due to space limitations and product development positioning, it is impossible to describe all the unnecessary or impossible events about the controller. Therefore, events that are not specifically described in this manual can be regarded as "impossible" or "not allowed" events.

The copyright of this manual belongs to Wuhan Huazhong Numerical Control Co., Ltd. It is illegal for any unit or individual to publish or copy.

Limited to the level of editors, there must be shortcomings and inadequacies in the manual, and we hope that users will not hesitate to enlighten us.

Caution

- Regarding "restrictions" and "available functions", the manual provided by the machine tool manufacturer takes precedence over this manual. Before actual machining, please perform dry run, and confirm machining program, tool compensation amount, workpiece offset, etc.
- A Matters which are not especially described as possible in this manual should be regarded as" impossible"
- At the time of writing this manual, it is assumed that all optional functions have been equipped. Please check the specifications provided by the machine tool manufacturer when using it.
- For related instructions of machine tool, please refer to the manual provided by the machine tool manufacturer.
- A The available screens and functions vary with NC systems (or versions). Be sure to confirm the specifications before use.

HNC-8 Numerical Control System Software

PLC Programming Manual

V2.4

Wuhan Huazhong Numerical Control Co., Ltd.

Content	L
---------	---

I OVERVIEW 8 1.1 SPECIFICATIONS OF PLC 9 1.2 SEQUENTIAL PROGRAM NOTION 10 1.3 ALIOCATION OF INTERFACE 11 1.4 SEQUENTIAL PROGRAM. 12 1.5 SEQUENTIAL PROGRAM COMPOSITION 15 1.6 ADDRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26
1.1 SPECIFICATIONS OF PLC .9 1.2 SEQUENTIAL PROGRAM NOTION .10 1.3 ALIOCATION OF INTERFACE .11 1.4 SEQUENTIAL PROGRAM. .12 1.5 SEQUENTIAL PROGRAM COMPOSITION .15 1.6 ADDRESS .17 2 BASIC INSTRUCTION .18 2.1 LD .21 2.2 LDI .23 2.3 OUT .25 2.4 OOUT .26
1.2 SEQUENTIAL PROGRAM NOTION 10 1.3 ALIOCATION OF INTERFACE 11 1.4 SEQUENTIAL PROGRAM 12 1.5 SEQUENTIAL PROGRAM COMPOSITION 15 1.6 ADDRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26
1.3 ALIOCATION OF INTERFACE 11 1.4 SEQUENTIAL PROGRAM. 12 1.5 SEQUENTIAL PROGRAM COMPOSITION. 15 1.6 ADRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT. 26
1.4 SEQUENTIAL PROGRAM. 12 1.5 SEQUENTIAL PROGRAM COMPOSITION 15 1.6 ADDRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26
1.5 SEQUENTIAL PROGRAM COMPOSITION 15 1.6 ADDRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26
1.6 ADRESS 17 2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26 2.5 GST 27
2 BASIC INSTRUCTION 18 2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26 2.5 GST 27
2.1 LD 21 2.2 LDI 23 2.3 OUT 25 2.4 OOUT 26 2.5 GST 27
2.2 LDI
2.3 OUT
2.4 OOUT
2.5 SET
2.6 RST
2.7 AND
2.8 ANI
2.9 OR
2.10 ORI
2.11 LDP
2.12 LDF
2.13 ANDP
2.14 ANDF
2.15 ORP
2.16 ORF
2.17 ORB
2.18 ANB
2.19 MPS, MRD, MPP
3 BASIC ELEMENT
3.1 NORMALLY-OPEN CONTACT
3.2 NORMALLY-CLOSED CONTACT
3.3 TRUE CONTACT
3.4 RISING EDGE OF CONTACT
3.5 FALLING EDGE OF CONTACT
3.6 Logic Output
3.7 INVERTED LOGIC OUTPUT
3.8 Setting Output
3.9 RESET OUTPUT
BASIC FUNCTION MODULE
4.1 CONTROL INSTRUCTION
4.1.1 Instruction M Get MGET

4.1.2 M Instruction Response MACK	56
4.1.3 T Instruction Get TGET	57
4.1.4 T Instruction Response TACK	58
4.1.5 Handwheel Control RTOMPG	59
4.1.6 Thermal Error Compensation Module TEMPSEN	60
4.2 MATHEMATICAL OPERATION	62
4.2.1 Addition ADD	62
4.2.2 Subtraction SUB	64
4.2.3 Multiplication MUL	65
4.2.4 Division DIV	
4.2.5 Increase One INC	68
4.2.6 Decrease One DEC	69
4.2.7 Logic AND WAND	70
4.2.8 Logic OR WOR	71
4.2.9 Logic XOR WXOR	
4.2.10 Complement NEG	73
4.3 COUNTER	74
4.3.1 Up/Down Counter CTR	74
4.3.2 Counter CTRC	
4.3.3 Custom Up/down Counter CTUD	77
4.4 TIMER	79
4.4.1 On-delay Timer TMRB	79
4.4.2 Off-delay Timer STMR	81
4.5 PROCESS CONTROL	83
4.5.1 Initialization Module End IEND	83
4.5.2 PLC1 Module End 1END	84
4.5.3 PLC2 Module End 2END	85
4.5.4 Jump JMP	86
4.5.5 Label LBL	87
4.5.6 Call Subprogram CALL	88
4.5.7 Subprogram Start SP	
4.5.8 Subprogram End SPE	90
4.5.9 Subprogram Return RETN	91
4.5.10 Loop LOOP	92
4.5.11 Next Loop NEXT	93
4.6 COMPARISON	94
4.6.1 Comparison CMP	94
4.6.2 Lower Than LT	95
4.6.3 Area Comparison ACMP	96
4.6.4 Consistency Comparison COIN	98
4.7 Data Manipulation	99
4.7.1 Moving Data MOV	99
4.7.2 Relative Moving Data XMOV	100
4.7.3 Batch Moving BMOV	102
4.7.4 Multiple Moves FMOV	110
4.7.5 Data Exchange XCH	111
4.7.6 Data Reset ZRST	113
4.7.7 Encoding ENCO	114
4.7.8 Decoding DECO	115
4.7.9 Transformation COD	117
	viii

4.7.10 Data Search SER	
4.7.11 Register Merging ASSEM	
4.7.12 Register Decomposition DISAS	
4.7.13 Area Conversion ACVT	
4.7.14 Alternate Output ALT	
4.7.15 Fetch Rising Edge PLS	
4.7.16 Fetch Falling edge PLF	
4.7.17 Points Transformation PTN	
4.7.18 Number Conversion NTP	
4.7.19 Parts Count PARTCNT	
4.7.20 Parts-counting Clear PARTCLR	
4.7.21 Temperature Collection Module HEADSEN	
4.7.22 Variable Reading Module VARGET	
4.7.23 Variable Writing Module VARSET	
5 STATUS WORD AND CONTROL WORD PROGRAMMING	139
5.1 INTRODUCTION ON STATUS WORD AND CONTROL WORD	
5.1.1 Axis Status Word	
5.1.2 Axis Control Word	
5.1.3 Channel Status Word	
5.1.4 Channel Control Word	
5.2 EXAMPLE OF STATUS WORD AND CONTROL WORD PROGRAMMING	
5.2.1 Working Mode Setting	
5.2.2 Working Mode Obtaining	
5.2.3 Control of Feed Axis and Spindle	
5.2.4 Home	
5.2.5 Incremental Magnification Override	
5.2.6 Cycle Start and Feed Hold	
5.2.7 Program Name Specified by Loaded Variable	
6 EXTENSION FUNCTION MODULE	
6.1 NC FUNCTION	
6.1.1 Channel Mode Setting MDST	
6.1.2 Channel Mode Getting MDGT	
6.1.3 Mode MDI	
6.1.4 Locking Channel MST	
6.1.5 Cycle Start CYCLE	
6.1.6 Emergency Stop STOP	
6.1.7 RESET	
6.1.8 Channel Exchange CHANSW	
6.1.9 Feed Hold Start HOLD	
6.1.10 Cycle Start LED CYCLED	
6.1.11 Feed Hold LED HOLDLED	
6.1.12 Block Skip (G31) ESCBLK	
6.1.13 Rapid Traverse Override RPOVRD	
6.1.14 Feedrate Override FEEDOVRD	
6.1.15 Spindle Override SPDLOVRD	
6.1.16 Incremental (Stepping) Magnification STEPMUL	
6.1.17 Dryrun DRYRUN	
6 1 18 Block Skin SKID	100

6.1.19 User Input USERIN	
6.1.20 User Output USEROUT	
6.1.21 Optional Stop SELSTOP	
6.1.22 Vector Tool Direction Setting TOOLSET	
6.1.23 Vector Tool Direction Clear TOOLCLR	195
6.1.24 8-bit Nixie Tube NIXIE	
6.1.25 Tool Display TOOLUSE	
6.1.26 Tool Life TOOLLIFE	
6.1.27 Tool Selection Module TOOL	
6.2 FUNCTIONAL UNIT OF AXIS	200
6.2.1 Spindle JOG SPDLJOG	200
6.2.2 Spindle Control 【Servo Spindle 】 SPDLBUS	201
6.2.3 Spindle Control with Gear 【Servo Spindle 】 SPDLBUS1	202
6.2.4 Spindle Orientation Enable SPDLORI	204
6.2.5 Spindle Orientation Completion SPDLOROK	205
6.2.6 Spindle Control 【DA】 SPDA	206
6.2.7 Zero Speed Detection for Spindle SPDLZERO	
6.2.8 Spindle Speed Arrival SPDLRCH	
6.2.9 Slave Axis Home SUBAXEN	210
6.2.10 Release Slave Axis DESYN	
6.2.11 Axis Jog JOGSW	
6.2.12 Axis Stepping STEPAXIS	
6.2.13 Jog Velocity JOGVEL	214
6.2.14 Home Start HOMRUN	
6.2.15 Home Start 1 HOMERUN1	
6.2.16 Home Approaching Switch HOMESW	
6.2.17 Homing Completion HOMLED	
6.2.18 Axis Enable AXEN	
6.2.19 Axis Ready (Bus) AXRDY	
6.2.20 Axis Lock AXISLOCK	
6.2.21 Relative PMC Axis Traverse AXISMOVE	
6.2.22 Absolute PMCAxis MovementAXISMVTO	
6.2.23 The Second Soft Limit of Axis AXLMF2	
6.2.24 Block Switch in Positive Limit Direction AXISPLMT	
6.2.25 Block Switch in Negative Limit Direction AXISNLMT	
6.2.26 Handwheel MPGSET	
6.2.27 Servo Enable (Bus) SVSW	
6.2.28 Axis Working Mode AXISMODE	
6.2.29 Axis Reference REFPT	230
6.2.30 During Axis Home AXISHOM2	231
6.2.31 During Axis Moving AXMOVING	232
6.3 System Function	233
6.3.1 Rotation ROT	233
6.3.2 Alarm ALARM	235
6.3.3 Event EVENT	236
6.3.4 Save Data SAVEDATA	237
6.3.5 Reset Setting Output RSTCHK	238
6.3.6 Reset Clear RSTCLR	239

7 OPERATIONAL MONITORING AND ONLINE MODIFICATION FOR LADDER DIAGRAM	
7.1 Ladder Monitoring	242
7.2 Find	244
7.3 Еріт	246
7.3.1 Insert Straight Line	248
7.3.2 Insert Vertical Line	248
7.3.3 Delete Vertical Line	249
7.3.4 Delete Component	249
7.3.5 Normally-open	250
7.3.6 Normally-closed	251
7.3.7 Logical Output	251
7.3.8 Inverted Output	252
7.3.9 Functional Module	253
7.3.10 Return	254
7.4 Edit Network	255
7.4.1 Select Network	256
7.4.2 Delete Network	256
7.4.3 Move	258
7.4.4 Сору	260
7.4.5 Paste Network	261
7.4.6 Insert Line	261
7.4.7 Insert Column	263
7.4.8 Return	264
7.4.9 Update Modification	265
7.4.10 Undo modification	266
7.5 Return	267
8 INSTRUCTION ON PLC DEVELOPMENT ENVIRONMENT	
8.1 Overview	269
8.2 Instaliation of Development Environment	270
8.3 Development Environment Interface	272
8.4 Development Environment Operation	278
APPENDIXA	

1 Overview

This chapter includes :

- 1.1 Specifications of PLC
- 1.2 Sequential Program Notion
- 1.3 Allocation of Interface
- 1.4 Sequential Program
- 1.5 Sequential Program Composition
- 1.6 Address

1.1 Specifications of PLC

Specificatio ns

Different types of PLC have different program capacities, number of function instructions, and usage range of register.

Specification	HNC8
Programming language	Ladder, STL
Execution cycle of the first level program	lms
Program capacity	
Ladder program	5000 lines
Statement list	10000 lines
Symbol name	1000
Instruction Basic instruction, Function instruction	
Internal relay of single byte (R)	400 bytes (R0~~R399)
Internal relay of double-byte (W)	400 bytes (W0~~W199)
Internal relay of four-byte (D) Timer	400 bytes (D0~~D99)
(T)	128 (T0~~T127)
Counter (C)	128 (C0~~C127)
Subprogram (S)	
Label (L)	
User-defined parameter (P)	200 (P0~~P199)
Holding storage area	
Timer (T) Counter	128 (T300~~T427)
(C)	128 (C300~~C427)
Four-byte register (B)	200 bytes (B0~~B49)
I/O module (X)	X0~~X512
(Y)	Y0~~Y512

1.2 Sequential Program Notion

Notion A brief description on sequential program is provided before on programming. Sequential program indicates that, the program which logically controls the machine and its relevant devices. For the personnel of electrical automation control engineering, the widely-used control flow is based on sequential control, from which sequential program, a programming method for PLC control, is generated.

Numerical control system firstly converts the program to a format, then CPU decodes and operates it. CPU rapidly reads each instruction in the storage, and operates program via arithmetic operation. Sequential program starts from the ladder diagram and other standard PLC languages. The ladder diagram can be understood as the execution order of CPU arithmetic operation.

The above is performed by PLC programming software, the role of which is to document sequential program.

1.3 Allocation of Interface

Interface

PLC interacts with external devices by external I/O. After control object is identified and relevant input/output signals are calculated, corresponding interfaces can be allocated to devices.

For easier debugging to PLC of numerical control system, input/output points of panel interfaces for series HNC8 have been fixed, and for that of other devices, refer to the electrical principle drawing.

Allocation

Panel points have been configured in the standard PLC programs of Series HNC 8 system, user doesn't need to change their definitions. At programming time, user uses other intermediate registers instead of input/output registers to program. The system interfaces bas been described in Appendix A to make a better understand of panel point distribution of series HNC8. Y487 and Y488 are output addresses of digital tubes on panel, X480 to X491 are panel input signals, and Y480 to Y486 are panel output signals.

1.4 Sequential Program

PLC sequential control is achieved by software, and the principle of it is different from that of common relay circuit. Thus, the principle of sequential control should be fully understood at the time of designing PLC sequential program.

Execution of sequential program In general relay control circuit, each relay may operate at the same time. In the figure below, when relay A acts, relay D and E can act at the same time (in the event of contact B and C being closed). In PLC sequential control, relays act in sequence. When relay A operates, relay D operates first, and then relay E operates (see figure 2.1(a)), that is, each relay operates in the order described in the ladder diagram.

Figure 2.1 (a)

(A) and (B) show the movement difference between relay circuit and PLC program.

Figure2.1 (b)

Relay circuit In figure 2.1(b) the actions of (A) and (B) are the same. After A (button switch) is turned on, coil B and C are on, with current flowing through coil B and C. B is cut off after C is switched on.

PLC Similar with relay circuit, in figure 2.1b(A), after A (button switch) is turned on, B and C are on, and B is switched off after a PLC program cycle. However, in program figure 2.1b(B), after A (button switch) is turned on, C is switched on, but B is not. Loop Sequential program executes from the beginning of the ladder diagram until the execution end, after that, it goes back to execute the begging of the ladder diagram again, which is called loop execution. That execution time from the begging to the end is called loop period. The loop period of PLC2 depends on the controlled steps. The shorter the loop period, the rapider the response of signal. Prior Sequential program consists of three parts: initialization program, the first level execution program, the second level program. The initialization program is performed once when system starts. The first level program executes every 1ms.

If the first level is longer, the total execution time will be longer. Therefore, you should document as short program of the first level as possible. The second level program can be automatically separated into n parts for execution, and executes every n ms.

Segmentation of the second level program

Segmentation of the second level program is to execute the first level program. When the number of segmentations is n, the implementation process is as below diagram:

When the last part of the second level program has been executed, the program starts from the beginning again. In the event of n segmentations, the time for one loop execution is n ms (1ms X n). The first level program executes every 1ms, and the second level program executes every n X 1ms. If the steps of the first level program increase, the steps of the second level program will correspondingly decrease within 1ms, then more segmentations will be gotten, and program processing time will be longer. For this reason, the first level program should be documented as briefly as possible.

The first level program only handles short pulse signal, which includes emergency stop, axis over-travel, and the like.

When subprogram is used, sequential program consists of:

1.5 Sequential Program Composition

Compositio For traditional PLC, ladder diagram can be only documented sequentially. The ladder diagram language, which allows structured program, has the following advantages:

- The program is easily to be understood and documented.
- It is more convenient to find out programming errors.
- It is easy to find out reasons causing errors.

There are three main structured programming means

Subprogram Subprogram regards the ladder diagram block as the processing unit. m

Nesting

The combination of documented subprograms forms structured program.

Conditional branch

Main program executes recurrently and detects whether condition is satisfied or not. If condition is satisfied, corresponding subprogram is executed; if condition is not satisfied, corresponding subprogram is not executed.

1.6 Address

AddressAddress is used to differentiate signals. Various of addresses correspond to inputDefinitionand output signals of machine and CNC, internal relay, counter and the like. The
address is composed of address No. and bit No.

A word must be specified to the left of address No. to express the signal types as below table:

Register	Signal	Range	
Х	Input signal from machine	X0~~X512	
Y	Signal output from PLC to machine	Y0~~Y512	
F	Input signal from NC	F0~~F3119	
G	Signal output from PLC to NC	G0~~G3119	
R	Internal relay of single byte	R0~~R399	
W	Internal relay of double-byte	W0~~W199	
D	Internal relay of four-byte	D0~~D99	
В	Power-off delay relay	B0~~B49	
Р	User-defined parameter	P0~~P199	
С	Counter (Those after C300 is for the power-off	C0~~C127	
	delay.)	C300~~C427	
т	Timer	T0~~T127	
1	(Those after T300 is for the power-off delay.)	T300~~T427	
L	Label number		
S	Subprogram number		

2 Basic Instruction

Sequential program is mainly composed of coil, contact, symbol and functional block. The segments, by which elements of ladder diagram are jointed, form the logical relationship of sequential program. Sequential program can be described by ladder diagram language, as well as statement list language which is written by mnemonics (LD, AND, OR, etc.) and register address. Ladder diagram is written by coil contact of relay and functional block.

As the international standard of IEC61131-3 lays out, ladder diagram language and statement list language can convert each other logically, and ambiguity caused by this can be avoided through some programming methods. In HNC_LADDER_WIN(V1.0) editing software, user can see that the two languages can mutually be compiled.

To better understand documenting and inner-making of sequential program, and to avoid errors in logic or understanding, please see the explanation of basic concepts as following:

Type:

PLC instruction of series 8 is divided into basic instruction and functional instruction.

Basic instruction

Basic instruction is the most basic and most common part of sequential program, with a total of 19. It executes one-bit manipulation.

Functional instruction

Functional instruction can perform the functions that is hard to be done by basic elements, and it can simplify programming.

Storage of logical outcome (ST)

Storage of logical outcome is a stack-like structure. Result of the current instruction 18

is saved in ST0. When reading instruction such as LD and LDI appears, result of current execution is needed to be saved in stack. When ANB or ORB instruction is encountered, the storage makes ST1 result out stack and logically calculate with result in ST0, which then is saved in ST0. Therefore, when sequential program is documented with statement list instruction, ANB and ORB must correspond to the input instructions after the first instruction, one to one; otherwise, errors may occur.

Storage of multi-output logical outcome

The role of this storage is similar with that of logical outcome storage. It is to save result of current node, and is usually used for multi-output instruction with conditional judgements (see detailed command instruction for the usage of MPS, MRD, MPP). What differs from storage of logical outcome is that, it permits reading result of node without stack out of the result. Only when the embedded use of multi-output function is needed is stack operation of storage performed. Similarly, MPS and MPP instructions must be used correspondingly; otherwise, logical errors may occur.

Pre and Post

Pre indicates that other elements can be connected to the front of the element, and post indicates that other elements can be connected to the back of the element.

Here are constraint ru	les about	the graphics	in this manual:
------------------------	-----------	--------------	-----------------

Graphics	Meaning
0	Can be used or not
\checkmark	Must be used
×	Cannot be used
0	Can use pre component or not
—	Must use pre component
	Cannot use pre component
0	Can use post component or not
	Must use post component
	Cannot use post component

No.	Instruction	Function
1	LD	Read in specified element signal status
2	LDI	Read in inverted status of specified element signal
3	LDT	Read in true element signal status
4	OUT	Output result of logical operation to specified address
5	OOUT	Output inverted result of logical operation to specified address
6	SET	After Logic OR the line calculation result to signal in specified address, return the result to this address.
7	RST	After Logic AND the inverted calculation result to signal in
		specified address, return the result to this address.
8	AND	Logic AND
9	ANI	Logic AND the inverted specified signal
10	OR	Logic OR
11	ORI	Logic OR the inverted specified signal
12	LDP	Read in rising edge of signal
13	LDF	Read in falling edge of signal
14	ANDP	Logic AND rising edge of specified signal
15	ANDF	Logic AND falling edge of specified signal
16	ORP	Logic OR rising edge of specified signal
17	ORF	Logic OR falling edge of specified signal
18	ORB	Block logic OR
19	ANB	Block logic AND
20	MPS	Node result push
21	MRD	Node result read
22	MPP	Node result pull

Detailed basic instructions are listed below:

2.1 LD

Format LD ______ Parameter 1 Function Read out status signal (1 or 0) of specified address, and save that signal in STO. It is used for the situation in which programming starts from the normally

Parameter Register point parameter

open node.

Example

Ladder Diagram		1.0 X2.0 RI A B C 5.0 R5 D 1.0 C 5.1 C F	.0 .4 	R10.0 WI R10.1				
	No.	Instruction	Address	Bit No.	Reference	ST2	ST1	ST0
Operation Process	1	LDI	X1 .	0	А			A
	2	ANI	X2 .	0	В			A.B
	3	ANI	R1 .	0	С			A.B.C
	4	OUT	R10 .	0	Output W1			A.B.C

5	LD	X5	•	0	D		D
6	ORI	X5		1	E		D+E –
7	OR	X5	•	3	F		$D + E + \overline{F}$
8	AND	X5	•	4	G		$(D+E+F)\overline{G}$
9	OUT	R10		0	Output W2		$(D+E+F)\overline{G}$

2.2 LDI

Format

FunctionRead out status signal (1 or 0) of specified address, and save that inverted signal
in STO. It is used for the situation in which programming starts from normally-
closed node.

Parameter Register point parameter

Example

Ladder Diagram	1	$\begin{array}{c c} R1.0 & R2.0 \\ A & B \\ K5.0 \\ D \\ E & K5.3 \\ \hline \end{array}$	R1.1 C R5.4 G X5.1	R1	0.0)-		
	No.	Instruction	Address	Bit	Refere	ST2	ST1	ST0
				No.	nce			_
Oper	1	LDI	R1 .	0	A			<u>A</u>
ation Pr	2	ANI	R2 .	0	В			A.B
ocess	3	ANI	R1 .	1	С			A.B.C
	4	OUT	R10 .	0	W1			A.B.C

5	LDI	X5 .	0	D		\overline{D}
6	ORI	X5 .	1	E		D + E
7	OR	X5 .	3	F		$\overline{D} + \overline{E} + F$
8	AND	R5 .	4	G		$\left(\overline{D} + \overline{E} + F\right)G$
9	OUT	R10 .	1	W2		$\left(\overline{D} + \overline{E} + F\right)G$

2.3 OUT

Format	01	utc L	〕□□ - Addres	s No. Bi	t No.				
Function	Output re used to o	Output result of logic operation (status of ST0) to the specified address. It is used to output the result to one or more than one address.							
Parameter	Register _l	point pa	arameter						
Example									
	Ladder Diagram	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				R10.0 W1 R10.1 W2			
		No.	Instruc tion	Addr ess	Bit No.	Refer ence	ST2	ST1	STO
	0	1	LDI	R1 .	0	A			Ā
	peratic	2	ORI	X5 .	0	С			$\overline{A} + \overline{C}$
	on Proc	3	ANI	G1 .	1	В			$\left(\overline{A}+\overline{C}\right)\overline{B}$
	yess	4	OUT	R10 .	0	W1			$\overline{(\overline{A}+\overline{C})\overline{B}}$
		5	OUT	R10 .	1	W2			$\left[\overline{\left(\overline{A}+\overline{C}\right)}\overline{B}\right]$
	Description	Cases	s about se	ries circ	uit and p	barallel (circuit		

_ _ _

_

_ _

2.4 OOUT

Function Output inverted result of logic operation (status of ST0) to the specified address.

It is used to output the result to one or more than one address.

Parameter

Register point parameter

Example

Ladder Diagram		$ \begin{array}{c c} R1.0 \\ \hline \\ A \\ X5.0 \\ \hline \\ C \end{array} $		G1.	.1		R10.0 -W1 R10.1 -W2	
	No.	Instr uctio n	Addr ess	Bit No.	Refer ence	ST2	ST1	ST0
Op	1	LD	R1 .	0	А			A
eratior	2	OR	X5 .	0	С			A+C
1 Proce	3	AND	G1 .	1	В			(A+C)B
SS	4	OUT	R10 .	0	W1			(A+C)B
	5	OOU T	R10 .	1	W2			(A+C).B

2.5 SET

Function Logic OR the result of logic operation (ST0) to the specified address, which then is output to the same address.

Parameter Register point parameter

Example

2.6 RST

Format	RST Address No. Bit No.
Function	Logic AND the inverted result of logic operation (ST0) to the specified address, which then is output to the same address.

Register point parameter

Example

Parameter

Ladder Diagram		$ \begin{array}{c c} R1.0 \\ \hline \\ A \\ X5.0 \\ \hline \\ B \end{array} $			R10.0			
Ope	No.	Instruction	Address	Bit No.	Reference	ST2	ST1	ST0
eration	1	LD	R1 . 0		A			A
Proce	2	OR	X5 . 0		В			A + B
SS	3	RST	R10 . 0		С			A + B
Descriptio								

2.7 AND

Format	AND
Function	Logic AND
Parameter	Register point parameter
Example	See the example for LD instruction

2.8 ANI

Format	ANIAddress No. Bit No.
Function	Logic AND NOT
Parameter	Register point parameter
Example	See the example for LD instruction

2.9 OR

Format	OR Address No. Bit No.
Function	Logic OR
Parameter	Register point parameter
Example	See the example for LDI instruction

2.10 ORI

Format	ORI Address No. Bit No.
Function	Logic OR NOT
Parameter	Register point parameter

Example See the example for LDI instruction

2.11 LDP

Format	
	LDP Address No. Bit No.
Function	Get rising edge of trigger element signal, and save the signal in STO.
	Set input signal to 1 in the next scanning period of the rising edge of input signal.
	It is used for the situation in which programming starts from elements of rising edge.
Parameter	Register point parameter
Control	Input signal: Set output signal to 1 at the rising edge of signal (0->1) .
condition	Output signal: During operation, input signal keeps 1 within one PLC scanning period.
Operation	
	ACT
	OUT

Example

Ladder Diagram		$\begin{array}{c c} R1.0 \\ \hline \\ R1.0 \\ \hline \\ R2.0 \\ \hline \\ R4.0 \\ \hline \\ W1 \\ \hline \\ C \\ \hline \\ \\ C \\ \hline \\ \\ C \\ \hline \\ \\ \\ \\$				
Operation Process	No.	Instruction	Address	Bit No.	Reference	
	1	LDP	R1 . O		Rising edge of A	
	2	ORF	X5 . O		Falling edge of B	
	3	ANDP	R2 . O		Rising edge of C	
	4	ANDF	R4 . O		Falling edge of D	
	5	OUT	R10 . 1		Output W1	

2.12 LDF

Format

LDF					
Function	Get falling edge of trigger element signal, and save the signal in ST0. Set input signal to 1 in the scanning period of the falling edge of input signal. It is used for the situation in which programming starts from elements of falling edge.				
Parameter	Register point parameter				
Control condition	Input signal: Set output signal to 1 at the falling edge of signal (1->0). Output signal: During operation, input signal keeps 1 within one PLC scanning period.				
Operation	1 2 3 4 Execution cycle				
	ACT				

Example See the example for LDP instruction

2.13 ANDP

2.14 ANDF

2.15 ORP

	ORP Address No. Bit No.
Format	e
Function	Logic OR rising edge
Parameter	Register point parameter
Example	See the example for instruction LDP

2.16 ORF

2.17 ORB

Format

ORB

Function

1) ORB is independent, and doesn't need to connect to other elements or functional blocks.

2) ORB is to connect two or more series circuits that contain more than one series block or contain the series ANB blocks.

3) Start the programming with LD or LDI, and have all series blocks being in parallel via ORB.

Parameter No parameter

Ladder Diagram	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} X2.0 \\ \hline \\ B \\ X2.1 \\ \hline \\ E \\ X2.2 \\ \hline \\ G \\ \end{array}$		ORB ORB	R1	0.0 H		
Ор	No.	Instr	Add	Bit	Refer	ST2	ST1	ST0
eratio		uctio n	ress	No.	ence			
n Proce	1	LD	X1.	0	А			A
ess	2	AND	X2 .	0	В			A.B
	3	LD	X1.	1	D		A.B	D
	4	AND	X2 .	1	E		A.B	D.E
	5	ORB						A.B + D.E
	6	LD	X1.	2	F		A.B+D.E	F
	7	AND	X2.	2	G		A.B + D.E	F.G
	8	ORB						A.B + D.E + F.G
	9	OUT	R10.	1	Н			A.B + D.E + F.G

2.18 ANB

Format

ANB

Function

1) ANB is independent, and doesn't need to connect to other elements or functional blocks.

2) ANB is to connect two or more parallel circuits that contain more than one parallel-connected block or contain the parallel ORB blocks.

3) Starts programming with LD or LDI, and have all series blocks being in parallel via ANB.

Parameter No parameter

2 Basic Instruction

	2	OR	X1. 1	В			A + B
	3	LD	X2. 0	С		A+B	С
	4	AND	X4. 4	D		A+B	C.D
	5	LD	X1. 2	E	<i>A</i> + .	C.D	Ε
	6	AND	X2.1	F	<i>A</i> + .	C.D	E.F
	7	ORB				A+B	C.D + E.F
	8	OR	X1. 3	G		A+B	CD+EF+G
	9	ANB					(A+B)(CD+EF+G)
	10	OR	X2. 2	Н			(A+B)(CD+EF+G) +H
	11	OUT	R10. 0	I			(A+B)(CD+EF+G) +H
Description				·			

٦

2.19 MPS, MRD, MPP

ſ

Format

	MPS MRD MPP
Function	1) MPS Stores signal states of this point, waiting to be used when other lines are output.
	2) MRD reads signal from last storage point, connects to the next node, of which signal status is always the same.
	3) MPP brings up signal status from this storage point, connects to the next node, and removes the status of this node.
	4) Every MPS must ends with MPP.
	5) The last connection line must be ended with MPP.
Parameter	No parameter

Ladder Diagram	Statement List		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD X1.0 MPS LD X1.1 OR X1.2 ANB OUT Y1.0 MRD LD X1.3 AND X1.4 LD X1.5 (followed by the right)	AND X1.6 ORB ANB OUT Y0.2 MPP AND X1.7 OUT Y0.3 LD X2.3 OR X2.4 ANB OUT Y0.4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD X1.0 MPS AND X1.1 MPS AND X1.2 OUT Y1.0 MPP AND X1.3 (followed by the right)	OUT Y1.1 MPP AND X1.4 MPS AND X1.5 OUT Y0.2 MPP AND X1.6 OUT Y2.0	
XI.0 XI.1 XI.2 XI.3 XI.4 YI.0 YI.1 Y0.2 Y2.0 Y2.1	LD X1.0 MPS AND X1.1 MPS AND X1.2 MPS AND X1.3 MPS AND X1.4 (followed by the right)	OUT Y1.0 MPP OUT Y1.1 MPP OUT Y0.2 MPP OUT Y2.0 MPP OUT Y2.1	

3 Basic Element

- This chapter includes the sections as following:
- 3.1 Normally-open Contact
- 3.2 Normally-closed Contact
- 3.3 True Contact
- 3.4 Rising Edge of Contact
- 3.5 Falling Edge of Contact
- 3.6 Logic Output
- 3.7 Inverted Logic Output
- 3.8 Setting Output
- 3.9 Reset Output

3.1 Normally-open Contact

Symbol

<ac< th=""><th>ldress></th></ac<>	ldress>
 	pmment>

Parameter	Parameter form	Data type	Storage area	Explanatio	on	Propert	ies
			X, Y, F,	Register	bit	Pre	0
<address></address>	• _	BOOL	G, R, W, D, P	to	be		
			т, С, в	checked		Post	\checkmark

FunctionWhen the bit saved in the specified address is "1", the normally-open
contact is closed; If the contact is closed, the signal will flow through this
contact.

Parameter Parameter 1: register point parameter, in the form of X0.1.

3.2 Normally-closed Contact

Symbol

<address></address>
<comment></comment>

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
			X, Y, F, G, R,	Register bit	Pro O
<address></address>	• _	BOOL	w, d, p, т, С, в	to be checked	Post √

- **Function** When the bit saved in the specified address is "0", the normally-closed contact is open; If the contact is open, the signal will flow through this contact.
- **Parameter** Parameter 1: register point parameter, in the form of X0.1.

3.3 True Contact

Symbol

Comment>		

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
Nama	Nono	Nono	Nere	Nono	Pre O
Inone	None	None	None	None	Post √

Function When PLC is turned on, the signal on the left of an element can always reach the right through it. This function is usually used as the switch setting of functional module input, and used for those which need constantly valid input.

Parameter No parameter.

Ladder Diagram	R144 Counting tool in positive direction T T R390 R390
Description	When the second input of counter uses true contact, the counting starts with 1 after counter is reset; when the third input uses true contact, the counter counts in continuous subtraction.

3.4 Rising edge of Contact

Symbol

 <addre:< th=""><th>ss></th></addre:<>	ss>
_ r -	
⊢∣ <comm< td=""><td>ent></td></comm<>	ent>

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address></address>	°	BOOL	X, Y, F, G, R, W, D, P, T ` C, B	Contact of rising edge detection	Pre ○ Post √

Function When signal is changed from "0" to "1", this contact is turned on.

Parameter 1: register bit.

Ladder Diagram	See the example for LDP instruction.
Description	

3.5 Falling Edge of Contact

Symbol

	4	Add	ress	>
			_	~
13	<(Corr	mer	nt>

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address></address>	°	BOOL	Х, Ү, F, G, R, W, D, P, T, С, в	Contact of falling edge detection	Pre ○ Post √

Function When signal is changed from "1" to "0", this contact is turned on.

Parameter Parameter 1: register bit.

Ladder	See the example for LDF instruction.
Description	

3.6 Logic Output

Symbol

	<address></address>
¢	$-\bigcirc$
	<comment></comment>

Parameter	Form	Data type	Storage area	Explanation	Properties
<address></address>	• _	BOOL	Y, G, R, W,	Output	Pre O
			D, В	con	Post ×

Function Output result of logical operation to output register.

Parameter Parameter 1: register bit.

Ladder	See the example for OUT instruction.
Description	

3.7 Inverted Logic Output

Symbol

	<address></address>
0	$-\bigcirc$
	<comment></comment>

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address></address>		BOOL	Y, G, R, W,	Inverted	Pre O
			D, В	output con	Post ×

Function Output inverted result of logical operation to output register.

Parameter 1: register bit.

Ladder	See the example for OOUT instruction.
Description	

3.8 Setting Output

Symbol

	<address></address>	
0—		

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address></address>		BOOL	Y, G, R, W,	Setting output	Pre O
		D, В		coil	Post ×

- FunctionWhen result of logical operation is "1", set output coil to output status, until
this coil is reset by other functions.
- ParameterParameter 1: register bit.

Ladder	See the example for SET instruction.
Description	

3.9 Reset Output

Symbol

Parameter	Parameter form	Data type	Storage area	Explanation	Prope	rties
<address></address>	• _	BOOL	Y, G, R, W,	Reset	Pre	0
			D, В	output coll	Post	×

Function When result of logical operation is "1", reset output coil, until this coil is set by other functions.

Parameter Parameter 1: register bit.

Ladder diagram	See the example for RST instruction.
Description	

4 Basic Function Module

- This chapter includes:
- 4.1 Control Instruction
- 4.2 Mathematical Operation
- 4.3 Counter
- 4.4 Timer
- 4.5 Process Control
- 4.6 Comparison
- 4.7 Data Manipulation

4.1 Control Instruction

4.1.1 Instruction M Get MGET

Format

	MOET	Add	ress 1	~		
	A		ress 2			
Parameter	Param form	eter n	Data type	Storage area	Explanation	Properties
<address 1=""></address>			INT	Constant	Channel No.	Pre O
<address 2=""></address>		INT	Constant	M code No.	Post √	

Function Through the channel selected by parameter 1, parameter 2 selects M code number which needs to be determined. When this channel gets this M code, the output is "1"; otherwise, the output is "0".

4.1.2 M Instruction Response MACK

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre O
< Address 2>	Address		Constant	M code No.	Post ×

FunctionWhen M Code has been implemented in this channel, it is necessary to reply to
M code. After the reply, this M instruction can continue the next instructions.

4.1.3 T Instruction Get TGET

<Address 2>

Format

Address 1 TGET Address 2					
Parameter	Parameter	Data	Storage area	Explanation	Properties
	form	type	Storage area		
<address 1=""></address>			_	Channel	Pre O
			Constant	No.	Post √

W, D, B

Constant, Y, G, R,

Т

No.

code

FunctionThrough the channel selected by parameter 1, parameter 2 is where the gotten T
code is stored in. When this channel gets T code, the output is 1; otherwise, the
output is 0.

INT

4.1.4 T Instruction Response TACK

Format

ç	TACK	Addre	255 1		
b					
Parameter	Parameter	Data	Storage area	Explanation	Pro

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre ○ Post ×

Function Through the channel selected by parameter 1, set to T code response in this channel.

4.1.5 Handwheel Control RTOMPG

Format

c[R	RTO MPG Address 1 Address 2					
Parameter		Paran for	neter m	Data type	Storage area	Explanation	Properties
<address 1<="" td=""><td>.></td><td></td><td></td><td>INT</td><td>Constant, X, Y, F, G, R, W, D, P, B</td><td></td><td>Pre O</td></address>	.>			INT	Constant, X, Y, F, G, R, W, D, P, B		Pre O
<address 2<="" td=""><td>2></td><td></td><td></td><td>INT</td><td>Constant</td><td></td><td></td></address>	2>			INT	Constant		

Function Handwheel control (only for series HNC8)

ParameterParameter 1: the register for the handwheel pulse increment input. (The
default register for handwheel of series HNC8 is X490)

Parameter 2: MPG number, this parameter is for handwheel numbering. When there are more than one handwheels, they are distinguished by this parameter.

4.1.6 Thermal Error Compensation Module TEMPSEN

Parameter	Parameter form	Data type	Storage area	Explanation	Properti es
<address 1=""></address>		INT	Constant		
<address 2=""></address>		BOOL	х		Pre 🔾
<address 3=""></address>		INT	Constant		$Post \times$
<address 4=""></address>		BOOL	Р		

Function

Analog signal of temperature sensor is converted to digital signal by AD of IO module, and is input to a position (group number) of X register which is determined by IO module device parameter.

Parameter

Parameter 1: number of temperature sensor (number of temperature register). HNC8 CNC system is limited to input of 20 temperature acquisition signals. Therefore, the range of values for temperature sensor number is zero to nineteen.

Parameter 2: group number of X register corresponding to the digital signal of temperature acquisition.

Parameter 3: thermocouple grid type (its default value is 0. 1: the corresponding model is built to calculate temperature by the user parameter specified by "parameter 4" which includes the lowest and highest (the temperature corresponding to the voltage of 6.7 V) temperatures; 2: temperature

sensor of PT100 is supported, and thermocouple grid of HIO-1075 is connected; 3: temperature sensor of KTY84-300 is supported, and thermocouple grid of HIO-1076 is connected; 4: the relationship between the measured temperature and the resistance calculated by the entered DA value is linear. The corresponding model is built to calculate temperature by the user parameter (P parameter) specified by "parameter 4" which includes the lowest and highest temperatures, as well as minimum and maximum resistances (unit: 0.01Ω).

Note: The thermocouple grid type of 2 and 3 are standard configurations, where the corresponding bus thermocouple grid can be connected, there are corresponding temperature models in system, and the value of P parameter doesn't need to be set.

Parameter 4: set the range of acquisition temperature for temperature sensor by user parameter (P parameter). As shown in the figure below, P30 specifies the acquisition of the lowest temperatures, and P31 specifies the acquisition of the highest temperatures (the temperature corresponding to the voltage 6.7 V, unit: degree). If the thermocouple grid type is 2 or 3, set value of P parameter will not be read.

Ladder Diagram	TEMP 0 SEN X15 0 P30
Statement List	TEMPSEN 0 X15 0 P30
Description	The temperatures which have been gathered by No. 0 temperature sensor, is put into X15 register. P30 specifies the lowest acquisition temperatures.

4.2 Mathematical Operation

4.2.1 Addition ADD

Format

Parameter	Parameter form	Data type	Storage area	Explanati on	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B		
< Address 2>		INT	Constant, X, Y, F, G, R, W, D, P, B		Pre √ Post ○
< Address 3>		INT	Y, G, R, W, D, B		

Function Perform addition operation.

Parameter Parameter 1: augend

Parameter 2: addend

Parameter 3: operation result output address.

Ladder Diagram	X3.4 D0 ADD 100 D1
Statement List	LD X3.4 ADD D0 100 D1 OUT R4.0
Description	When X3.4 is turned on, D1=D0+100 is implemented.

4.2.2 Subtraction SUB

Format

Darameter	Parameter form	Data	Storago area	Expla	Properties
Parameter		type	Storage area	nation	
< Address 1>		INT	Constant, X,		
<address 1=""></address>			Y, F, G, R, W,		
			D, P, B		
< Address 2>		INT	Constant, X, Y,		Pre √
<audress 2=""></audress>			F, G, R, W, D,		Post O
			Р, В		
<address 3=""></address>			Y, G, R, W, D,		
			В		

Function Perform subtraction operation.

Parameter Parameter 1: minuend

Parameter 2: subtrahend

Parameter 3: operation result output address.

Example

Ladder Diagram	X3.4 SUB 100 D1 X3.4 SUB 100		
Statement List	LD X3.4 SUB D0 100 D1 OUT R4.0		
Descrip tion	When X3.4 is turned on, D1=D0-100 is implemented.		

٦

4.2.3 Multiplication MUL

Format

Paramotor	Parameter form	Data	Storage area	Properties
Faranielei		type		
< Address 1>		INT	Constant, X, Y, F, G,	
			R, W, D, P, B	
(Adduces 2)		INT	Constant, X, Y, F, G,	
<address 2=""></address>			R, W, D, P, B	Pre √
<address 3=""></address>		INT	Y, G, R, W, D, B	Post ()

Function Perform multiplication operation.

Parameter Parameter 1: multiplicand

Parameter 2: multiplier

Parameter 3: operation result output address.

Ladder Diagram	X3.4 MUL 100 D1
Statement List	LD X3.4 MUL D0 100 D1 OUT R4.0
Description	When X3.4 is turned on, D1=D0*100 is implemented.

Format

4.2.4 Division DIV

ор	Address 1 IV Address 2 Address 3			
Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre √ Post ○
<address 3=""></address>		INT	Y, G, R, W, D, B	

Function Perform division operation.

Parameter Parameter 1: dividend

Parameter 2: divisor, cannot be 0

Parameter 3: operation result output address.

4.2.5 Increase One INC

Format

Parameter	Parameter	Data	Storage area	Properties
	form	type		
<address 1=""></address>		INT	Y, G, R, W, D, B	Pre √
				Post O

Function Perform plus-one operation.

Parameter Parameter 1: operand.

4.2.6 Decrease One DEC

Format

Parameter	Parameter	Data	Storage	Properties
	form	type	area	
<address 1=""></address>		INT	Y, G, R, W,	Pre √
			D, B	Post O

Function Perform minus-one operation.

Parameter Parameter 1: operand.

4.2.7 Logic AND WAND

WANE	Address 1 Address 2 Address 3			
Parameter	Parameter	Data	Storage	Properties
Parameter	form	type	area	
< Address 1>		INT	Constant, X,	
<audiess 1=""></audiess>			Y, F, G, R, W,	
			D, P <i>,</i> B	
		INT	Constant, X,	Pre √
<address 2=""></address>			Y, F, G, R, W,	Post O
			D, P, B	
<address 3=""></address>			Y, G, R, W, D,	
		INT	В	

Function Perform logic AND.

Parameter Parameter 1: the number being operated.

Parameter 2: operand.

Parameter 3: operation result output address.

Ladder Diagram	X3.4 WAND 100 D1
Statement List	LD X3.4 WAND D0 100 D1 OUT R4.0
Description	When X3.4 is turned on, D0=D0&100 is implemented.
4.2.8 Logic OR WOR

F	0	r	n	n	a	t
г	υ				α	ι

WOR	Address 1 Address 2 Address 3			
Parameter	Parameter	Data	Storage area	Properties
runneter	form	type		
< Address 1>		INT	Constant, X, Y, F,	
<address 1=""></address>			G, R, W, D, P, B	
< A ddroso 2		INT	Constant, X, Y, F,	_ /
<a caracteristica="" di="" e="" la="" la<="" td=""><td></td><td></td><td>G, R, W, D, P, B</td><td>Pre √</td>			G, R, W, D, P, B	Pre √
<address 3=""></address>		INT	Y, G, R, W, D, B	
1				

Function Perform logic OR

Function Parameter 1: the number being operated.

Parameter 2: operand.

Parameter 3: operation result output address.

Example

Ladder Diagram	X3.4 D0 WOR 100 D1
Statement List	LD X3.4 WOR D0 100 D1 OUT R4.0
Description	When X3.4 is turned on, D0=D0 100 is implemented.

٦

4.2.9 Logic XOR WXOR

Format

<u>о</u> —	-	Address 1	- 22
	WXOR	Address 2	
		Address 3	

Parameter	Parameter	Data	Storage	Properties
	form	type	area	Properties
<addross 1=""></addross>		INT	Constant, X,	
<auuiess 12<="" td=""><td></td><td></td><td>Y, F, G, R, W,</td><td></td></auuiess>			Y, F, G, R, W,	
			D, P, B	
		INT	Constant, X,	Pre √
<address z=""></address>			Y, F, G, R, W,	Post O
			D, P, B	
<address 3=""></address>		INT	Y, G, R, W,	
			D, B	

Function Perform logic XOR.

Parameter Parameter 1: the number being operated.

Parameter 2: operand

Parameter 3: operation result output address.

4.2.10 Complement NEG

Format

O NE	G Address 1			
Parameter	Parameter	Data	Storage	Properties
	form	type	area	
<address 1=""></address>		INT	Y, G, R, W, D,	Pre √
			В	Post \bigcirc

Function Perform complement operation.

Parameter Parameter 1: operand

4.3 Counter

4.3.1 Up/Down Counter CTR

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		BOOL	R, W, D, B	Pre 1
<address 2=""></address>		INT	Constant, R, W, D, B, P	Post √

Function Common up/down counter.

Parameter Parameter 1: current value of counter. This function is used to get the current value of the counter.

Parameter 2: preset value of counter.

 Input
 Input 1: control input

 Input 2: start value after counter is reset. When the register is turned on, the counting starts with 1; when the register is not satisfied, the counting starts with 0.

 Input 3: up/down input. When the register is turned on, count-down is

performed; when the register is not turned on, count-up is performed.

Input 4: reset input

4.3.2 Counter CTRC

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre 1
<address 2=""></address>		INT	Constant, R, W, D, B, P	Post √

Function Fixed counter

Parameter	Parameter 1: counter number		
	Parameter 2: preset value of counter		
Input	Input 1: control input		
	Input 2: reset input		

Ladder Diagram	X2.5 CTRC 100 Y1.4 Y1.4
Statement List	LD X2.5 LD X4.0 CTRC 0 100 OUT Y1.4
Description	When X2.5 is switched on and then off 100 times, the counter is on. When X4.0 is switched on, the counter is reset, and the signal is output to Y1.4.

4.3.3 Custom Up/down Counter CTUD

Format

Parameter	Parameter	Data	Storage	Properties
	form	type	area	reperties
<address 1></address 		INT	Constant	Pre v
<address 2></address 		INT	Constant, R, W, D, B, P	Post √

- **Function** Up/down counter with custom starting value.
- Parameter Parameter 1: counter number

Parameter 2: preset value of counter

Input Input 1: control input

Input 2: start value after reset. When the register is turned on, the counting starts with 1; when the register is turned off, the counting starts with 0.

Input 3: Up/down input. When the register is turned on, count-down is performed; when the register is turned off, count-up is performed.

Input 4: Reset input

Ladder Diagram	X2.5 X2.6 X2.7 X2.7 X2.8 CTUD 100 YI.4
Staten	LD X2.5
nent	LD X2.6
List	LD X2.7
	LD X2.8
	CTUD 0 100
	OUT Y1.4
Description	When X2.5 is switched on and off 100 times, counter 0 is on, and the signal is output to Y1.4. When X2.6 is switched on, the counter starts count with 1 after being reset; otherwise, the counter starts count with 0. When X2.7 is switched off, the counter is incremented; otherwise, the counter is decremented. When X2.8 is switched on, the counter is reset.

4.4 Timer

4.4.1 On-delay Timer TMRB

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	
<address 2=""></address>		INT	Constant	Pre √
<address 3=""></address>		INT	Constant, R, W, D, P	POSL

Function On-delay timer

Parameter Parameter 1: timer number

Parameter 2: time unit, the details are as following:
Time unit is hour, in the event of the value being 3;
Time unit is minute, in the event of the value being 2;
Time unit is second, in the event of the value being 1;
Time unit is millisecond, in the event of the value being 0.
Parameter 3: Length of timing.

4.4.2 Off-delay Timer STMR

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	
<address2></address2>		INT	Constant	Pre √
<address 3=""></address>		INT	Constant, R, W, D, P	Post O

Sequence

diagram

Function Off-delay timer

Parameter

Parameter 1: timer number

Parameter 2: time unit, the details are as following:

Time unit is hour, in the event of the value being 3;

Time unit is minute, in the event of the value being 2;

Time unit is second, in the event of the value being 1;

Time unit is millisecond, in the event of the value being 0.

Parameter 3: Length of timing.

4.5 Process Control

4.5.1 Initialization Module End IEND

Format

Parameter	Parameter	Data	Storage	Properties
	form	type	area	
Nono	Nono	Nona	Nono	Pre ×
None	None	None	Inone	Post ×

Function To define the end of the initialization module. Program generally is preceded by initialization module which is performed only once after the system is powered on.

Ladder Diagram	IEND
Statement List	IEND
Description	Initializer is ended.

4.5.2 PLC1 Module End 1END

Format

|--|

Parameter	Parameter form	Data type	Storage area	Properties
None	None	None	None	Pre × Post ×

Function PLC1 module is ended.

Ladder Diagram	1END
Statement List	1END
Description	PLC1 program is ended.

4.5.3 PLC2 Module End 2END

Format

Parameter	Parameter	Data	Storage	Properties
	form	type	area	
None	None	Nana	None	Pre ×
None	INORE	None	None	Post ×

Function PLC2 module is finished.

Ladder Diagram	2END
Statement List	2END
Description	PLC2 program is ended.

4.5.4 Jump JMP

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	L	Pre √
				Post ×

Function

Follow the label to jump.

Ladder Diagram	X35.5 JMP L1111
State	LD X35.5
me	JMP L1111
De	If x35.5 is on, go to the position labeled L1111 to continue the
scri	execution.

4.5.5 Label LBL

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address1></address1>		INT	L	Pre ○ Post ×

Function Label, follow the label to jump. It is used with JMP.

Ladder Diagram	LBL L1111
Statemen t List	LBL L1111
Description	Set label L1111.

4.5.6 Call Subprogram CALL

Format

Parameter	Parameter form	Data type	Storage area	Properties
				Pre 🔾
<address 1=""></address>		INT	S	Post ×

Function Call subprogram.

Parameter Subprogram number.

Ladder Diagram	CALL SI23
Statement List	LD X12.2 CALL S123
Description	When X12.2 input is valid, jump to the subprogram of No. S123 to execute.

4.5.7 Subprogram Start SP

Format

Ĩ		Ì	Ê		
6	SP	Address 1			

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	S	Pre × Post ×

Function To start subprogram.

Parameter Number (up to 512 numbers of subprogram is supported).

Ladder Diagram	SP S111
Statemen t List	SP 5111
Description	Set subprogram number S111.

4.5.8 Subprogram End SPE

Format

SPE			

Parameter	Parameter	Parameter Data Sto		Properties
	form	type	area	
None	None	Nona	Nono	Pre ×
None	INORE	None	None	Post ×

Function To end Subprogram.

Parameter

Example	Ladder Diagram	SPE
	Statemen t List	SPE
	Description	Subprogram is ended.

4.5.9 Subprogram Return RETN

Format

RETN

Parameter	Parameter		Storage	Properties
	form	type	area	
None	None	None	None	Pre ○ Post ×

Function Subprogram return. If this instruction is encountered in the subprogram, the execution will jump out of the subprogram, and continue the rest.

Parameter

Example	Ladder Diagram	R100.0 RETN
	Statement List	LDI R100.0 RETN
	Description	If normally-closed point R100.0 is valid, the subprogram will return.

4.5.10 Loop LOOP

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre × Post ×

FunctionTo start the loop. The statement within the body of each loop will be executed.
When the number of loops is reached, the rest statement will be continued. This
instruction must be used in conjunction with NEXT instruction. The statement
between LOOP and NEXT is called the loop body.

Parameter Number of loops, constant and register can be used.

4.5.11 Next Loop NEXT

Format

NEXT		

Parameter	Parameter	Data	Storage	Properties
	form	type	area	
None	None	None	None	Pre × Post ×

Function Enter the next loop.

Ladder Diagram	NEXT
Statement List	NEXT
Description	Enter the next loop. It is used with the instruction LOOP.

4.6 Comparison

4.6.1 Comparison CMP

Format

Parameter	Parameter	Data type	Storage	Explanation	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	When address 1 is larger than address 2, the output is 0, when	Pre 〇
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	address 1 is smaller than or equal to address 2, the output is 1.	Post √

FunctionTo compare. When the address 1 is larger than address 2, the output is 0, when
the address 1 is lower than or equal to the address 2, the output is 1.

ParameterParameter 1: comparing data, can be constant and register.Parameter 2: data being compared, can be constant and register.

Example	E
---------	---

Ladder Diagram	T R0 CMP 100
Description	When R0<=100, the condition is satisfied.

4.6.2 Lower Than LT

Format

r			
100000000	Address 1		
LT	8	-i -	
	Address 2		

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant , X, Y, F, G, R, W, D, P, B	When address 1 is larger than or equal to address 2, the output is 0, when address 1 is smaller than address 2, the output is 1.	Pre 〇
<address 2=""></address>		INT	Constant , X, Y, F, G, R, W, D, P, B		Post √

FunctionTo compare. When the address 1 is larger than or equal to the address 2, the
output is 0, when the address 1 is smaller than the address 2, the output is 1.

Parameter Parameter 1: comparing data, can be constant and register.

Parameter 2: data being compared, can be constant and register.

4.6.3 Area Comparison ACMP

Format		<address 1<br="">P <address 2<br=""><address 3=""></address></address></address>				
	Parameter	Parameter form	Data type	Storage area	Explanation	Properties
	<address1></address1>		INT	Constant, X, Y, F, G, R, W, D, P, B	When data of address 3	
	<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	that of address 1,	Pre O
	<address 3=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	than that of address2, the output is 1.	Post V

Function Area comparison. When data of address 3 is larger than that of address 1, and smaller than that of address2, the output is 1.

Parameter Parameter 1: the lower limit of comparison range, can be constant or register.

Parameter 2: the upper limit of comparison range, can be constant or

register.

Parameter 3: Comparing data, can be constant or register.

HNC-8 PLC Programming Manual 4 Ba

e	
õ	
0	
<u> </u>	
<u>–</u>	
¥	
÷	
0	

4.6.4 Consistency Comparison COIN

i ormat

cont	<address 1=""></address>	
COIN	<address 2=""></address>	

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	When the data of address 1 and	
< Address 2>		INT	Constant, X, Y, F, G, R, W, D, P, B	same, the output is 1; when they are not the same, the output is 0.	Pre ○ Post √

FunctionConsistency comparison, When the data of address 1 and address 2 are the
same, the output is 1; when they are not the same, the output is 0.

Parameter Parameter 1: benchmark data, can be constant and register.

Parameter 2: comparing data, can be constant and register.

4.7 Data Manipulation

4.7.1 Moving Data MOV

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Moving	Pre O
<address 2=""></address>		INT	Y, G, R, W, D, B	data	Post √

Function To move data. To transfer source data to destination address.

Parameter Parameter 1: source data, can be constant and register.

Parameter 2: destination data, can be register.

4.7.2 Relative Moving Data XMOV

Format

Parameter	Parameter	Data	Storago aroa	Evolution	Properti
	form	type	Storage area	Explanation	es
<address 1=""></address>		INT	Constant		
<address 2=""></address>		INT	G, R, W, D, B		
<address 3=""></address>		INT	Constant	Relative	Pre 〇
<address 4=""></address>		INT	G, R, W, D, B	moving data	Post √

Function

To move data. To transfer source data to the destination address.

Parameter

Parameter 1: the format of operand 1. 0 represents register, 1 represents register B, 2 represents register P. For example, the parameter 1 being 0 and the parameter 2 being R10 represents R10 address; the parameter 1 being 1 and the parameter 2 being R10 represents the register B, and the group number of register B is the data registered by R10; the parameter 1 being 2 and the parameter 2 being R10 represent the register P, and P register group number is the data stored in R10

Parameter 2: the address of operand 1.

Parameter 3: the address of operand 2.

Parameter 4: the address of operand 2.

Ladder Diagram		XMOV	1 D1 1 D2		
Description	Assign the data shifted D2 in register B.	l to D1 ir	n register	r B to the position s	hifted to

4.7.3 Batch Moving BMOV

Format

Parameter	Parameter form	Data type	Storage area	Explanatio n	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B		Pre O
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P B	Moving the data in batch.	
<address 3=""></address>		INT	Constant		Post √

FunctionTo move data in batch. Multiple data of which the addresses start with
source is transferred to starting address of destination.

Parameter Parameter 1: Starting address of source data

Parameter 2: Starting address of destination

Parameter 3: The number of moves, can only be constant.

	l adder Diagra	T	BMOV	D0 D2 2		
-	3					
	2	Two data starting fr	om D0 i	s assign	ed to two positio	ns starting from
	ecrintion	D2, that is, D0 is ass	igned to	o D2, an	d D1 is assigned t	o D3.

4.7.4 Multiple Moves FMOV

Format

Darameter	Parameter	Data	Storage	Explanation	Properties
Farameter	form	type	area		
<address 1=""></address>		INT	Y, G, R, W, D, B		
<address 2=""></address>		INT	Y, G, R, W, D, B	Multiple	Pre 〇
<address 3=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	movemen t data.	Post ×

FunctionMultiple movement data. Source data is transferred to a space that is
from the starting address of destination to ending address of destination.

Parameter Parameter 1: starting address of destination

Parameter 2: ending address of destination

Parameter 3: source data

4.7.5 Data Exchange XCH

Format

Darameter	Parameter	Data	Storage	Evaluation	Properti
Parameter	form	type	area	Explanation	es
<address 1=""></address>		INT	Constant		
<address 2=""></address>		INT	G, R, W, D, B		Pre ()
<address 3=""></address>		INT	Constant	It is used to exchange	
<address 4=""></address>		INT	G, R, W, D, B	data.	Post ×

- FunctionData exchange. Address of operand 2 is exchanged with address of operand 4.
The format of operand 2 can be represented by the value of address 1. 0
indicates the default register which is used in address 2, 1 indicates that B
register is used in address 2. In the same way, the format of operand 4 can be
represented by the value of address 3.
- ParameterParameter 1: the format of operand 1. 0 indicates register, 1 indicates B
register, and 2 indicates P register. For example, parameter 1 is 0 and
parameter 2 is R10, which represent the address is R10. Parameter 1 of 1, and
parameter 2 of R10, represent B register, and B register group number is the
data stored by R10. Parameter 1 of 2, and parameter 2 of R10, represent P
register, and P register group number is the data stored by R10.
Parameter 2: address of operand 1
Parameter 3: format of operand 2
Parameter 4: address of operand 2

4.7.6 Data Reset ZRST

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		BOOL	Y, G, R, W, D, B	Data reset	Pre 🔾
<address 2=""></address>		BOOL	Y, G, R, W, D, B		Post √

FunctionData reset. Reset all the data from starting address of operand to ending
address of operand.

Parameter Parameter 1: starting address of operand;

Parameter 2: ending address of operand.

4.7.7 Encoding ENCO

Format

-		Address 1		
3	FNCO	Address 2		
8	21,000	Address 3		
		Address 4		

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		BOOL	X, Y, F, G, R, W, D, P, B		Pre O
<address 2=""></address>		INT	Constant	It is used for override	
<address 3=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	value conversion	
<address 4=""></address>		BOOL	Y, G, R, W, D, P, B		Post ×

FunctionCoding. When there are 5 data bits (3, 5, 7, 8, 9) from the starting position of
encoded data, if source data is 3, the output is 00000001B; if source data is 5,
the output is 00000010B; if source data is 7, the output is 00000100B.

Parameter Parameter 1: the starting position of encoded data, can be register D.

Parameter 2: number of coded data, can be constant.

Parameter 3: source data, can be register R and D.

Parameter 4: Output address of destination data, can be register R and D.

Example

- 1							
	add			D8			
	er Di		ENCO	8			
	agra		ENCO	D1			
	В			D2			
	Description	After being encod	ed, dat	ta in Dí	L is output to D2	2.	
	-						

4.7.8 Decoding DECO

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	It is used	Pre√
<address 2=""></address>		INT	Constant	for override value	
<address 3=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	conversion.	
<address 4=""></address>	 _	BOOL	Y, G, R, W, D, P, B		Post ×

Function Decoding, which is reversed to encoding.

Parameter Parameter 1: the starting position of decoded data, which can be register D

Parameter 2: number of decoded data, can be constant.

Parameter 3: source data, can be register R and D

Parameter 4: Output address of destination data, can be register R and D.

Ladder Diagram	DECO	D8 8 D1 D2			
Description	After being decoded,	the dat	ta in D1 is out	put to D2	

4.7.9 Transformation COD

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	It is used	Pre √
<address 2=""></address>		INT	Constant	for override value conversion	
<address 3=""></address>		BOOL	X, Y, F, G, R, W, D, P, B		Post ×
<address 4=""></address>		BOOL	Y, G, R, W, D, P, B		

- Function Code transformation. It is mainly used for override value conversion. Take spindle override as an example, there are 8 data bits (50, 60, 70, 80, 90, 100, 110, 120) from D0; when source data is 0, the data transformed is 50; when source data is 1, the data transformed is 60; when source data is 2, the data transformed is 70.
- ParameterParameter 1: the starting position for transforming data, can be register D.Parameter 2: the number of data being transformed, which can be constant.Parameter 3: source data, can be register R and D.

Parameter 4: output address of the target data, can be register R and D.

Ladder Diagram	DECO	D8 8 D1 D2	
Description	After being decoded,	the da	ta in D1 is output to D2.

4.7.10 Data Search SER

format

Darameter	Parameter	Data	Storage	Evolution	Properties
Parameter	form	type	area	Explanation	
<address 1=""></address>		INT	X, Y, F, G, R, W, D, P, B	When data is found, the	Pre √
<address 2=""></address>		INT	Constant	output is 1; when data is	
<address 3=""></address>		INT	X, Y, F, G, R, W, D, P, B	not found, the output is 0.	
<address 4=""></address>		INT	Y, G, R, W, D, P, B		Post ×

Function To search data. Search a data in a statement list. When the data is found, the output is 1; when the data is not found, the output is 0.

Parameter Parameter 1: searching address, can only be register D.

Parameter 2: searching range, can be constant.

Parameter 3: the data to be searched, can be constant and register X, Y, K, L, F, G, R, D.

Parameter 4: the output address of searched result, can only be register D.

Ladder Diagram	T	SER	D0 4 D4 D5		
Description	Search the data in output the position	n D4 ar on whe	mong t ere the	he 4 data starti data is found t	ing from D0, and o D5.

4.7.11 Register Merging ASSEM

Format

Paramotor	Parameter	Data	Storago area	Explanatio	Proper
Falameter	form	type	Storage area	n	ties
<address 1=""> <address 2=""></address></address>		INT	X, Y, F, G, R, W, D, P, B Constant	To merge the data of several registers into one	Pre√
<address 3=""></address>		INT	G, W, D, B	register.	Post ×

Function ddress

parameter

Parameter 1: source address.

Parameter 2: quantity of source registers, can only be constant.

Parameter 3: target address, can be register G, W, D, B.

To merge several register data into one register.

4.7.12 Register Decomposition DISAS

Format	٥ <u>ــــــــــــــــــــــــــــــــــــ</u>	DIS	Address 1 AS Address 2 Address 3	-			
	Parameter		Parameter form	Data type	Storage area	Explanation	Proper ties
	<address 1<="" td=""><td>.></td><td></td><td>INT</td><td>F, G, W, D, P, B</td><td>To break up</td><td>Pres/</td></address>	.>		INT	F, G, W, D, P, B	To break up	Pres/
<address 2=""></address>			INT	Constant	the data of one register into several	TIE V	
	<address 3=""></address>		`		Y, G, R, W	registers.	Post ×

Function To break up the data of one register into several registers.

Parameter

Parameter 1: source address.

Parameter 2: number of source registers, can only be constant.

Parameter 3: target address, can be register Y, G, R, W.

Ladder Diagram		DISAS	D0 4 Y0		
Description	Break up the data one 32-bit data is	of D0 i broken	nto the up int	e four data starti o 4 8-bit data).	ng from Y0 (that is,

4.7.13 Area Conversion ACVT

~		
0		Address 1
	ACVT	Address 2
		Address 3

Parameter	Parameter	Data	Storage	Explanation	Properties
Farameter	form	type	area		
<address 1=""></address>		INT	Р	Convert source	Dres
<address 2=""></address>		INT	X, Y, F, G, R, W, D, P,	data which	Prev
			В	proportional	
<address 3=""></address>		INT	Y, G, R, W,	relationship	
			D, B	To target data.	Post ×

Function Convert source data into the target data according to a certain ratio.

parameter Parameter 1: Address of proportional relationship.

0	Minimum value of source data
1	Maximum value of source data
2	Minimum value of target data
3	Maximum value of target data

Parameter 2: number of source registers.

Parameter 3: target address, can be register Y, G, R, W, D, B ;

Ladder Diagram	T P0 DISAS D0 D1
De	Convert D0 data which follows a certain proportional relationship to
escri	D1.D1= (D0-P0) * (P3-P2) / (P1-P0) +P0;
ptio	

Post √

4.7.14 Alternate Output ALT

Format

·[ALT <add< th=""><th>iress></th><th>0</th><th></th><th></th></add<>	iress>	0		
Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Number	Pre √

FunctionAlternate output. The component keeps its output status, until it encounters
the rising edge, then the output status changes (change from 0 to 1, or 1 to 0).

4.7.15 Fetch Rising Edge PLS

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant	Rising edge	Pre O
			Constant	number	Post √

Function Get the status of the current line or current position, and get its trigger signal of the rising edge.

Set the input signal to 1 in the current scan cycle of the rising edge signal. (Note the difference between the trigger component of rising edge for basic component and this function). This function is suitable for the situations where the rising edge status needs to be detected.

4.7.16 Fetch Falling edge PLF

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>				Falling edge module number	Pre O
			Constant		Post √

FunctionGet the status of the current line or current position, and get its trigger signal of
the falling edge.

Set the input signal to 1 in the current scan cycle of the falling edge signal. (Note the difference between the function here and the trigger component of falling edge in basic component). This function is suitable for the situations where the falling edge status needs to be detected.

4.7.17 Points Transformation PTN

Format

-	Address 1	Address 2	Address 3
		Address 4	Address 5
PIN	Audicos	Address 6	Address 7
		Address 8	Address 9

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		BOOL	Y, G, R, W, D, B		
<address 2=""></address>	 _	BOOL	X, Y, F, G, R, W, D, P, T, C, B		
<address 3=""></address>		INT	Constant		Pre ()
<address 4=""></address>	 _	BOOL	X, Y, F, G, R, W, D, P, T, C, B	When the point is effective, the corresponding	
<address 5=""></address>		INT	Constant	number is	
<address 6=""></address>		BOOL	X, Y, F, G, R, W, D, P, T, C, B	Benefation	
<address 7=""></address>		INT	Constant		Post ×
<address 8=""></address>	 _	BOOL	X, Y, F, G, R, W, D, P, T, C, B		
<address 9=""></address>		INT	Constant		

Function To build the corresponding relationship between points and numbers. When the point is effective, the corresponding number is generated.

Parameter 1: the destination address.

Parameter 2: point 1

Parameter Parameter 3: number 1

Parameter 4: point 2

Parameter 5: number 2

Parameter 6: point 3

Parameter 7: number 3

Parameter 8: point 4

Parameter 9: number 4

Ladder Diag		PTN	RO	Y30.0 Y30.1	0			
ram				Y30.2 Y30.3	3			
Description	When Y30.0 is effective, R0=0. When Y30.1 is effective, R0=1. When Y30.2 is effective, R0=2.							

4.7.18 Number Conversion NTP

Format

Parameter	Parameter form	Data type	Storage area	Properties	
<address 1=""></address>		BOOL	Y, G, R, W, D, B		
<address 2=""></address>		INT	Constant		
<address 3=""></address>		BOOL	X, Y, F, G, R, W, D, P, T, C, B	Pre 🔿	
<address 4=""></address>		INT	Constant]	
<address 5=""></address>		BOOL	X, Y, F, G, R, W, D, P, T, C, B		
<address 6=""></address>		INT	Constant		
<address 7=""></address>		BOOL	X, Y, F, G, R, W, D, P, T, C, B	Post ×	
<address 8=""></address>		INT	Constant		
<address 9=""></address>		BOOL	X, Y, F, G, R, W, D, P, T, C, B		

FunctionTo build the corresponding relationship between numbers and points. The point
signal corresponding to the number in Parameter 1 is generated.

Parameter 1: the address of source data

Parameter 2: number 1

Parameter 3: point 1

Parameter Parameter 4: number 2

Parameter 5: point 2

Parameter 6: number 3

Parameter 7: point 3

Parameter 8: number 4

Parameter 9: point 4

Ladd				0	Y30.0		
er Dia	ler Diagram	NTP	DO	1	Y30.1		
gram		KU	2	Y30.2			
				3	Y30.3		
Des	When R0=0,	, Y30.0 is	effective	2.			
cripti	When R0=1,	, Y30.1 is	effective	2.			
on	When R0=2, Y30.2 is effective.						
	When R0=3, Y30.3 is effective.						

4.7.19 Parts Count PARTCNT

OPART Address							
Parameter	Parameter	Data	Storage area	Explanation	Properties		
	form	type					
<address 1=""></address>		INT	Constant	When is condition is satisfied, the parts count of <address 1=""> Channel will increase by 1.</address>	Pre ○ Post √		

Function To count machined parts.

Parameter Parameter 1: channel number

4.7.20 Parts-counting Clear PARTCLR

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	When condition is satisfied, parts count of <address> channel is cleared.</address>	Pre ○ Post √

Function Clear the count of the parts.

Parameter Parameter 1: channel number.

Format

۵	HEAD SEN	Address 1 Address 2 Address 3			
<address 1=""></address>		BOOL	X, Y, F, R, W, D, P,	When <address 2=""> is</address>	Pre O
			Т, С, В	0, the temperature	Post ×
<address 2=""></address>		INT	Constant	collection module starts to count, and the temperature	
<address 3=""></address>		INT	Constant	data in <address 1> is stored in the starting address</address 	
				given by <address 3="">.</address>	

4.7.21 Temperature Collection Module HEADSEN

Function

Temperature collection module.

Parameter

Parameter 1: total quantity of temperature collections, can be constant. Parameter 2: enable switch of temperature collection module, 0 indicates counting starts, other values indicate the module is not enabled.

Parameter 3: the initial location where the temperature collection data is stored, and it can be register D.

Ladder Diagram	X32.1	HEAD SEN	10 0 D1	
Descriptio n	When X32.1 is turned to count, and 10 tem given by D1.	d on, the ter perature da	nperatur ta is stor	e collection module starts ed in the initial location

4.7.22 Variable Reading Module VARGET

Parameter	Format	Туре	Storage area	Description	Properties
<address 1=""></address>		INT	Constant (0~9)	If the offset number address variable value of <address 2=""></address>	
<address 2=""></address>		INT	Constant, X, Y, F, G,	corresponding to variable type is an integer, this value will	Pre √
			R, W, D, P, B	4>; if the variable	
<address 3=""></address>		INT	Constant (0~4)	value is a floating point, it will be read	
<address 4=""></address>			Y, G, R, W, D, B	to <address 4=""> after enlarging the exponential times of 10</address>	

Function To read variable values of system.

ParameterParameter 1: type of variable.

Parameter 2: offset number of variable address which is read

Parameter 3: floating point variable which is increased by power of 10 times.

Parameter 4: result address

4.7.23 Variable Writing Module VARSET

Parameter	Format	Туре	Storage area	Description	Properties
<address 1=""></address>		INT	Constant (0-9)	If the value in <address 4=""> is an</address>	
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	assign the value to <address 2=""> corresponding to the variable type; if the</address>	Pre √
<address 3=""></address>		INT	Constant (0-4)	value of <address 4=""> is a floating point type, set it to <address 2=""> after magnifying the</address></address>	
<address 4=""></address>			Y, G, R, W, D, B	exponential multiple of <address 3=""> of 10</address>	

Function To set variable values of system.

Parameter Parameter 1: type of variable.

Parameter 2: address offset number corresponding to the variable type.

Parameter 3: floating point variable which is increased by power of 10 times.

Parameter 4: data address

Variable
type

Variable type value (address 1)	Variable offset number (address 2)				
0: user variable	0-4999 corresponding to #50000-#54999				
1: extension user variable, compatible for FANUC #500-#999	0-499 corresponding to #500-#999				
2: 32-bit integer system variable	0-9999				
3: 64-bit integer system variable	0-4999				
4: floating point system variable	0-4999				
5: 32-bit integer channel variable	2000*ch+0-1999				
6: floating point channel variable	1000*ch+0-999				
7: 32-bit integer axis channel	100*ax+0-99				
8: 64-bit integer axis channel	50*ax+0-49				
9: tool variable	200*t+0-199 corresponding to #(70000+200*t+0) ~ #(70000+200*t+199)				

5 Status Word and Control Word Programming

This chapter includes:

- 5.1 Introduction on Status Word and Control Word
- 5.2 Example of Status Word and Control Word Programming

5.1 Introduction on Status Word and Control Word

Overview

The status word and control word are the most direct way of the interaction between CNC and PLC. The status data of system can be obtained through the status word, and user can write control word to change the system state. In the HNC8 system, F represents status word with its property being read-only, G represents control word with its property being read-write.

However, to limit the use of some key functions of system, some control words are restricted, or are invisible to user. Please read following constraints of status word and control word carefully.

	can be used
	Reserved for future expansion
	Not allowed to be used by user

word Range of

application

status

and

Usage restrictions

word

control

of

Status words and control words can be divided into three types for each of its function in the system. They all have serviceable range based on the system model, refer to the configuration manual for details.

- Status words and control words of axis
- Status words and control words of channel
- Status words and control words of system

Take the words of channel as an example:

Symbol form

This example shows the format: channel 3, the second group of status word, and

No.0 status word. 2560 is the offset of the channel status word. The format of other types of words is similar.

5.1.1 Axis Status Word

Overview 80 status words are configured for each axis. Each status word has 16-bit bytes. The first row indicates the bits from 0 to 7, and the second row indicates the bits from 8 to 15. The axis status words need to be used with the logical number offset of axis.

Axis status	D7	D6	D5	D4	D3	D2	D1	D0
word	D15	D14	D13	D12	D11	D10	D9	D8

F0

Slave axis	Slave axis	Homing	Homing	Homing	1st reference	2nd reference	Axis motion
follow	zero	of slave	completion	failure	point return	point return	
		axis					
Axis reset	Axis lock	Axis	Axis	4 th	3 rd reference	2 nd reference	1st reference
		parameter	overload	reference	point	point	point
		ок		point			

F1

SPD arrival	Spindle zero speed	Orientation completion	Rapid traverse feed	Reserved	Reserved	Spindle mode	PMC enable
Index axis	Index	Index axis	Reserved	Reserved	Reserved	Reserved	Reserved
lock	position	unlock					

F2	Servo parameter	Zero position capture	Reserved	Servo homing	2Enc zero	Reserved	Servo ready	First Z capture
	Zero speed	SPD	Gain switching	Z pulse	Torque	Speed	Position	SV ready
	of spindle	arrival		capture	control	control	control	

F3

Reserved	Reserved	Reserved	Reserved	Reserved	Servo prompt	Servo alarm	Servo normal
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Orientation completion

Details

[F0.0 **]** During the axis movement, when the axis is moving, the value is 1; when the axis is not moving, the value is 0.

(F0.1 **)** The first step of homing: when the axis is homing without meeting home block, the value is 1; otherwise, the value is 0.

(F0.2 **)** The second step of homing: when Z pulse is being looked for, the value is 1; otherwise, the value is 0.

(F0.3 **)** Unsuccessful homing: when the axis homing is not completed, the value is 1; otherwise, the value is 0.

(F0.4 **)** Successful homing: When the axis has been to zero, the value is 1; otherwise, the value is 0.

[F0.5] Slave axis is returning to reference point.

[F0.6 **]** Reference position for slave axis has been checked.

[F0.7 **]** Following status of slave axis has been lifted.

(F0.8 **)** Comfirm the first reference: when the axis is at the first reference point, the value is 1; otherwise, the value is 0.

(F0.9 **)** Comfirm the second reference: when the axis is at the second reference point, the value is 1; otherwise, the value is 0.

(F0.10 **)** Comfirm the third reference: when the axis is at the third reference point, the value is 1; otherwise, the value is 0.

(F0.11 **)** Comfirm the forth reference: when the axis is at the forth reference point, the value is 1; otherwise, the value is 0.

[F0.13 **]** Axis parameter take effect.

[F0.14] Axis has been locked.

[F0.15 **]** Axis has been repositioned.

(F1.0 **)** PMC control enable. When PMC control has been enabled, the value is 1; otherwise, the value is 0.

[F1.1 **]** Feed spindle mode. 1 is position mode, and 0 is speed mode.

[F1.5] Orientation of feed spindle has been finished.

(F1.6**)** Feed spindle is at zero speed.

[F1.7 **]** Feed spindle speed arrival.

(F1.13 **)** Index axis is unlocked. 1 indicates that system notifies PLC to unlock index axis, and the index axis is enabled.

[F1.14] Index axis is at index position.

(F1.15 **)** Index axis is locked. 1 indicates that system notifies PLC to lock index axis. The index axis is disabled.

(F2.0 **)** When Z pulse is captured once during homing of axis, the value is 1; otherwise, the value is 0.

[F2.1] When servo ready flag is 0, servo can receive incremental data.

[F2.3] Capture Z pulse of the second encoder, which is mainly used for homing of distance-coded grating scale.

[F2.4] When servo has been back to zero, the output is 1.

(F2.6 **)**Zero capture, which is mainly used for spindle. When spindle meets the first Z pulse at rotating time, set the value to 1. In the event of CS switching, the value needs to be set to 1.

(F2.7 **)** Servo parameter switching. 0: default parameter. 1: switch to the second set of servo parameter.

(F2.8**)** When bus servo is ready, the value is 1; otherwise, the value is 0.

(F2.9 **)** When servo is in position control mode, the value is 1; otherwise, the value is 0.

(F2.10 **)** When servo is in speed control mode, the value is 1; otherwise, the value is 0.

[F2.11] When servo is in torque control mode, the value is 1; otherwise, the

value is 0.

[F2.12] When Z pulse is encountered, the value is 1; otherwise, the value is 0.[F2.13]

(F2.14 **)** When the spindle speed reaches, the value is 1, otherwise, the value is 0.

(F2.15 **)** Spinde stop: when spindle stops, the value is 1; otherwise, the value is 0.

(F3.0**)** When servo is normal, the value is 1.

(F3.1 **)** When servo alarms, the value is1.

(F3.2 **)** When servo prompts, the value is 1.

(F3.8 **)** Spindle orientation completion. After spindle orientation is set, spindle starts to orient. After the orientation is completed, servo returns the signal of completing spindle orientation, and the value is 1; otherwise, the value is 0.

(F4 **)** Number of channel which the axis belongs to. (Channel number is in decimal.)

[F5] Number of slave axes which are guided. (Number of slave axes is in decimal.)

[F[6/7]] Real-time output command increment, motor coordinate.

[F[8/9/10/11]] Real-time output command position, motor coordinate. (metric unit)

[F[12/13/14/15]] Output command pulse position, unit: pulse.

[F[16/17]] Command pulse per cycle. Number of command pulses which is sent to servo each cycle.

[F[18/19]] Output command torque.

[F[20/21/22/23]] Actual feedback position of encoder 1. (metric unit)

[F[24/25/26/27]] Actual feedback position of encoder 2. (metric unit)

[F[28/29/30/31]] Command position of machine. (metric unit)

[F[32/33/34/35]] Actual position of machine. (metric unit)

[F[36/37]] Axis alarm

[F36.2 **]** Plus software limit switch is reached.

(F36.3 **)** Minus software limit switch is reached

[F36.4] Actual speed is overspeed.

[F36.6] Overspeed

F36.7 Ultra acceleration.

[F36.8] Z pulse cannot be found.

[F36.9] Connection has been aborted.

[F36.10 **]** Reference point in not returned.

(F36.11 **)** Sync position out-of-tolerance

(F36.12**)** Slave axis zero check is aborted

[F36.13 **]** Sync speed out-of-tolerance

[F37.0] Plus software limit is exceeded.

[F37.2] Minus software limit is exceeded.

[F37.2 **]** Acceleration does not match maximum speed.

[F[38/39]] Axis prompt

[F38.0] Max compensation ratio is exceeded.

[F38.1] Max compensation is exceeded.

[F38.2] Zero offset parameter is too small.

[F38.4 **]** Software limit is too large.

[F38.5 **]** The second software limit is too large.

[F38.6] Absolute encoder cycle digits are illegal.

[F38.7 **]** Position overflow.

[F38.8 **]** Target is outside plus software limit.

[F38.9 **]** Target is outside minus software limit.

[F38.10 **]** Mask angle of Z pulse needs to be adjusted.

[F38.11] Reference point needs to be adjusted.

[F38.12 **]** Tracking error is too large.

[F[70]] Current mode of axis.

5.1.2 Axis Control Word

Overview 80 control words are configured for each axis. Each control word has 16-bit bytes. The first row indicates the bits from 0 to 7, and the second row indicates the bits from 8 to 15. The axis control words need to be used with the logical number offset of axis.

Axis	D7	D6	D5	D4	D3	D2	DI	D0
control	Di	20	55	DI	25	02	DI	50
word	D15	D14	D13	D12	D11	D10	D9	D8

GO

Axis	Axis lock	Homing	Homing	Inhibition	Inhibition	Minus	Plus limit
enable		block	start	in minus	in plus	limit	
				direction	direction		
Axis reset	Compensa	Reserved	Reserved	Slave axis	Reserved	Reserved	Reserved
	tion			follow			
	extension						

G1

*SP	*SP	*SP	*SP Jog	Extension	Second	Relative	Absolute
rotation	rotation	orientation		software	software	ртс	pmc motion
CCW	cw			limit	limit	motion	
Response	Response	Reserved	CS	Reserved	Reserved	Reserved	Reserved
locking	unlocking		response				

G2

Servo Parameter	Reserved	Reserved	Reserved	Capture Z pulse of encoder 2	Reserved	Reserved	Capture Z pulse
Spindle	Orientation	Reserved	Spindle	Torque	Speed control	Position	Servo gain
current-	gear-shift		onentation	control		control	
limiting							

G3

| Reserved | Servo enable |
|----------|----------|----------|----------|----------|----------|----------|--------------|
| Reserved |

Details	[G0.0] Plus limit switch of axis.
	[G0.1] Minus limit switch of axis.
	[G0.2] No axis movement in positive direction.
	[G0.3] No axis movement in negative direction.
	[G0.4] Set to start homing.
	[G0.5] Set homing block.
	[G0.6] Set to lock the axis.
	[G0.7] Set to axis enable
	[G0.11] Set to disable function of slave axis following
	[G0.14] Compensation expansion
	[G0.15] Single-axis reset
	[G1.0] Absolute PMC axis motion is enabled.
	[G1.1] Relative PMC axis motion is enabled.
	[G1.2] The second software limit is enabled.
	G1.3 Extension software limit is enabled.
	[G1.4] Feed-spindle JOG.
	[G1.5] Feed-spindle orientation.
	[G1.6] Feed -spindle rotates in clockwise direction.
	[G1.7] Feed -spindle rotates in counter clockwise direction.
	[G1.12] Response flag of PLC to spindle C/S switching.
	[G1.14] Response flag of PLC to signal of unlocking index axis.
	[G1.15] Response flag of PLC to signal of locking index axis.
	[G2.0] Z pulse flag. (when motor is at the position of Z pulse, this flag is 1.)
	[G2.1] Wait for zero pulse
	[G2.2] Turn off function of searching zero pulse.
	[G2.3] Capture zero pulse of the second encoder.
	【G2.7】 Servo parameter switching. 0: Default parameter, 1: switch to the second set of parameters.

[G2.8] Servo gain switching.

[G2.9] Switch to position control mode.

[G2.10] Switch to speed control mode.

[G2.11] Switch to torque control mode.

[G2.12] Spindle orientation start.

[G2.14] Directional gear-shift of spindle.

[G2.15] Spindle current limiting.

[G3.0] Servo enable switch.

[G4] Axis jog flag. When the axis is manual, or returning to zero, or the spindle is rotating, this flag is effective.

[G5] Increment flag of axis. When axis is moving incrementally, this flag is effective.

[G[6/7]] Jog speed. 0: stop; 1: Jog speed in parameter; 2: Rapid traverse speed in parameter; >2: Self-defined speed.

[G8**]** Incremental magnification.

(G9**)** Handwheel magnification.

[G[10/11]] handwheel pulse.

[G[12/13/14/15]] Axis feedback position, unit: pulse

[G[16/17/18/19]] Axis feedback position 2, unit: pulse

G[20/21] Actual speed of axis, unit: pulse. Actual axis-speed is the incremental value per cycle of the actual feedback position of axis (G12-G15).

[G[22/23]] Actual speed 2 of axis

[G[24/25]] Actual torque of axis

[G[26/27]] Tracking error. (Tracking error of axis is the difference between the actual axis feedback position (G12-G15) and the axis command position (F12-F15).)

[G[28/29/30/31]] Counter value of encoder 1

[G[32/33/34/35]] Counter value of encoder 2

[G[36/37]] Real-time compensation value.

[G[38/39]] Sample timestamp

G[40/41/42/43] Latch position 1 (when the first encoder has Z pulse, the current position is latched, which is used for homing of G31 or distance code.

[G[44/45/46/47]] Latch position 2 (when the second encoder has Z pulse, the current position is latched, which is used for homing of G31 or distance code.

[G[48/49/50/51]] Target position of absolute movement for PMC axis.

[G[52/53/54/55]] Incremental movement of PMC axis

[G[56/57]] Servo alarm code.

[G[58/59]] Servo prompt code.

[G60] Axis control mode switching (2 is handwheel interruption, and 103 is PMC mode)

[G61] Override value of PMC axis.

[G62.0] PMC axis stop.

[G62.1] Handwheel interruption reset.

[G62.2] Turn on function of tangent following.

[G62.4] Index axis switch.

[G62.5] Synchronize the axis position when the slave axis coupling is restored

[G62.8] Spindle control, write actual rotation speed to instruction.

[G62.9] Start spindle rotation speed of gear shift.

[G64 **]** Current axis gear.

[G66/67] Gear shift of spindle.

【G68/69】Z pulse position.

[G70/71] Z pulse interval 1.

[G72/73] Z pulse interval 2.

【G74】Gear shift of spindle.

[G78/79] Sample data of servo

5.1.3 Channel Status Word

Overview 80 control words are configured for each channel. Each control word has 16-bit bytes. The first row indicates the bits from 0 to 7, and the second row indicates the bits from 8 to 15. The axis control words need to be used with the logical number offset of channel.

Axis status	D7	D6	D5	D4	D3	D2	D1	D0
word	D15	D14	D13	D12	D11	D10	D9	D8

F2560	User	Motion at	Cycle start	Feedhold	Mode #3	Mode #2	Mode #1	Mode #0
	intervention	the time of non-auto						
	Search Z pulse	Resetting	Dwell request	Reset flag	Verify	Reserved	Thread turning	Cutting

F2561	reserved	reserved	Await completion	Interruption skip	Interruption completion	Program completion	Program start	Program selected
	reserved	reserved	reserved	reserved	reserved	reserved	Non-empty completion	Non-empty instruction

F2562

reserved	reserved	reserved	reserved	reserved	reserved	reserved	reserved
4S instruction	3S instruction	2S instruction	1S instruction	Constant linear speed of spindle	Index instruction	Tool offset flag	reserved

Details

[F2560.0 ~F2560.3] To get mode

0: Reset mode 1: Auto mode 2: JOG mode 3: Incremental mode 4: Handwheel mode 5: Homing mode 6: PMC mode 7: Single block mode 8: MDI mode

[F2560.4] Feedhold: channel is in state of feedhold.

[F2560.5] Cycle start: channel is in state of cycle start.

[F2560.6] There is movement in non-auto mode.

[F2560.7 **]** There is user movement intervention.

[F2560.8] Cutting.

(F2560.9 **)** Thread-cutting: channel is in state of cutting thread, and feedhold is not allowed.

[F2560.11] Verification state.

(F2560.12 **)** Channel reset: in the event of channel reset or reset button on panel being pressed, channel reset is effective, until channel reset response is set.

[F2560.13] Suspend request.

[F2560.14] Channel is resetting.

[F2560.15] When axis is homing to look for Z pulse, switching mode is not allowed.

(F2561.0 **)** Program is selected, which is set by interpreter.

[F2561.1] Program start, which is set by channel control.

[F2561.2] Program is completed, which is set by channel control.

[F2561.3] Interrupt instruction G28/G31 is completed.

[F2561.4] Skip interrupt instruction.

[F2561.5] Wait for completing instruction.

[F2561.8] There are non-empty instruction flags in channel.

[F2561.9] Non-empty instruction flag is completed in channel.

[F2562.9] Tool offset mark [tool offset number is in T instruction]

[F2562.10] PLC index instruction flag.

(F2562.11 **)** Constant linear speed of spindle.

[F2562.12] The first S instruction.

[F2562.13] The second S instruction.

[F2562.14] The third S instruction.

[F2562.15] The forth S instruction.

[F2569] Tool offset number, which is in T instruction.

[F[2570/2571] The first S instruction. Unit: 0.001 revolution/ minute.

[F[2572/2573] The second S instruction. Unit: 0.001 revolution/minute.

[F[2574/2575] The third S instruction. Unit: 0.001 revolution/minute.

[F[2576/2577] The forth S instruction. Unit: 0.001 revolution/minute.

[F2578/79] G31 number which is currently waiting signal.
[F2580] The currently running coordinate system

[F[2581/2589]] Axis number of 9 axes in channel

[F[2590/2593]] Axis number of 4 spindles in channel.

[F[2594/2595]] Alarm code for syntax error.

[F[2596/2599]] Channel alarm code.

[F[2600/2603]] Channel prompt number.

[F[2604/2607]] User output.

[F[2608/2615]] M codes which run in channel, with a maximum of 8.

[F2616] T instruction in channel. When T code is executing in channel, the

value of T code is in register; otherwise, the output is -1.

(F2617**)** B instruction in channel. B axis in boring machine is executed by PLC, and indexing is executed by B instruction.

[F2632] Number of tool which is alarmed for the maximum life span being reached.

[F2636.0] Channel is resetting.

[F2632.1] Program has been stopped exactly.

[F2632.2] Flag of inclined axis

[F2632.3] Interpolation instruction runs in channel.

[F2632.4] Flag of spindle synchronization.

[F2632.5] Handwheel feed direction.

[F2637.0] Subprogram process start.

[F2637.1] Subprogram waits for feedhold, and saves breakpoint.

[F2637.2] Break point flag.

[F2637.3] Start to load subprogram.

[F2637.4] Complete loading.

[F2637.5] Start running.

[F2637.6] Complete running.

[F2637.7] Breakpoint has been restored.

[F2637.8] Process ends.

[F2637.9] Process error.

[F2637.10] Process reset.

[F2637.11] Process waits for interpreter to complete reset.

[F2638.0] Cumulative flag of tool changing in tool life

5.1.4 Channel Control Word

Overview 80 control words are configured for each channel. Each control word has 16-bit bytes. The first row indicates the bits from 0 to 7, and the second row indicates the bits from 8 to 15. The axis control words need to be used with the logical number offset of channel.

Axis								
control	D7	D6	D5	D4	D3	D2	D1	D0
word	D15	D14	D13	D12	D11	D10	D9	D8

G2560	Measurement	Dry run	Cycle start	Feedhold	Work mode	Work mode	Work mode	Work mode
	Data save	Data recovery	Reset	Buff clear	Emergency stop	Panel reset	Reset response	Verify

G2561	Data recovery	Any line	Rerun	Interpretation reset	Optional stop	Block skip mark	Rerun 2	Interpreter startup
	Reserved	Program modification	Reserved	Handwheel interruption	External interruption	User motion	Reserved	Save interpretation

G2562	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
	Reserved	Reserved	Rotation speed arrival	No spindle	MST lock	Speed check	Reserved	Reserved

G2620	Panel enable	РМС	Handwheel	Homing	Increment	JOG	Single block	Auto
	Reserved	Reserved	Reserved	Reserved	Reserved	Rapid traverse	Incremental magnification	

G2621		Handy	vheel 1		Handwheel 0		
	Reserved	Reserved	Reserved	Handwhe el 1 enable	Handwheel 1 magnification	Handwheel 0 magnification	

G2622	Axis 7+	Axis 6+	Axis 5+	Axis 4+	Axis 3+	Axis 2+	Axis 1+	Axis 0+
	Reserved	Axis 8+						
G2623	Axis 7-	Axis 6-	Axis 5-	Axis 4-	Axis 3-	Axis 2-	Axis 1-	Axis 0-
	Reserved	Axis 8-						

Details

【G2560.0/1/2/3】 Work mode. 0: reset mode, 1: auto mode, 2: manual mode, 3: increment mode, 4: handwheel mode, 5: homing mode, 6: PMC mode, 7: single block mode, 8: MDI mode

[G2560.4] Feedhold: Set feedhold in channel.

[G2560.5] Cycle start: set cycle start in channel.

[G2560.6] Dry run: set to dry run in channel.

[G2560.7] Mearsurement interruption flag. When this flag is set to 1, system interrupts ongoing G31 instruction. It is used with G2582.

[G2560.8] Verification

[G2560.9] PLC reset response: when PLC has been reset, set this flag to 1.

[G2560.10] Panel reset flag. Through detecting this flag, PLC determines whether the system is resetting.

[G2560.11] Emergency stop flag. This flag is set for emergency stop of machine.

[G2560.12] Flag of channel buffering clear.

[G2560.13] This flag is set when resetting machine.

[G2560.14] Flag of channel data recovery.

[G2560.15] Channle data save.

[G2561.0] Flag of interpreter startup.

[G2561.1] Program reruns the second step.

[G2561.2] Flag of skipping block. When this flag is set to 1, system skips block.

[G2561.3] Optional stop flag. When this flag is set to 1, system performs optional stop.

[G2561.4] Flag of interpreter reset.

[G2561.5] Flag of program rerun.

[G2561.6] MDI resets to program header

[G2561.7] Flag of interpreter data recovery.

[G2561.8] Flag of interpreter data save.

[G2561.9] Exact-stop check.

[G2561.10] Flag of user motion control.

[G2561.11] Flag of external interruption.

[G2561.12] Turn on handwheel interruption.

[G2561.13] When rapid traverse override is 0, use the feed override to control G00, up to 25%.

[G2561.14] Flag of program modification.

[G2561.15] Coordinate of workpiece or tool changes, re-interpretation is requested.

[G2562.0] S instruction response word of No.1 spindle.

[G2562.1] S instruction response word of No.2 spindle.

[G2562.2] S instruction response word of No.3 spindle.

[G2562.3] S instruction response word of No.4 spindle.

[G2562.8] Feed direction of precutting by handwheel. 0 is moving forward, 1 is retracting.

[G2562.10] Spindle speed check.

[G2560.10] Flag of panel reset. PLC determines whether system is resetting by detecting this flag.

[G2560.11] Emergency stop, to set channel of emergency stop.

[G2562.11] MST lock.

[G2562.12] Spindle is not started.

[G2562.13] Spindle speed doesn't reach.

[G2562.14] Following start.

[G2562.15] Precutting by handwheel. Use handwheel magnification.

[G2563] T instruction.

[G2564] Feedrate override.

[G2565] Rapid traverse override.

[G2566/67/68/69] Spindle override. Override of four spindles in channel.

[G2570/71/72/73/74/75/76/77] Spindle output instruction, output instructions

of four spindles in channel. After obtaining spindle rotation speed [F2570-

F2577], PLC calculates spindle override, and outputs spindle instruction. In servo spindle, the output is the spindle speed, and in PMW spindle, the output is DA value.

[G2578] F2578.1 imaginary axis control.

[G2579] Machined-parts count.

[G2580/81] Protected area mask

[G2582] G31 number. When G31 execution is interrupted, the number of interrupted G31.

[G2584/85/86/87] User bit input

[G2588~2607] User value input.

[G2608~2615] M code response of channel. When PLC is not executing M code, set to -1; when PLC is executing M code, set to -2; when PLC has executed M code, set to the currently executed M code.

G2616 T code response of channel. When PLC has executed T code, set to the currently executed T code; otherwise, set to -1.

[G2617] Tangent following of tool.

[G2636.0] Channel reset (PLC sets register, and notifies HMI to reset channel.)

[G2636.3] IRQ control.

[G2636.4] Channel resetting is not allowed. [Reset button is invalid]

[G2636.5] Life timekeeping/counting pause.

[G2560.15] Channel data save

[G2561.0] Interpreter start.

[G2637] Subprogram calling start.

[G2638] Counting of tool changing.

[G2970] Flag of system activity channel.

[G2978] Control word of system activity control channel

[G2980~2989] Control word of handwheel [previous axis selection]

[G2990~2999] Display output of handwheel.

[G3010~3025] External alarm of PLC (External alarm of PLC, and 8*32=256 external alarms exist concurrently).

[G3040~3055] External event of PLC (external event of PLC, and 8*32=256 external events exist concurrently).

5 Status Word and Control Word Programming

【G3056~3070】 External reminder of PLC (external reminder of PLC and 8*32

256 external events exist concurrently)

[G3080~3099] Temperature sensor value

5.2 Example of Status Word and Control Word

Programming

5.2.1 Working Mode Setting

Function Set the status in the working mode of channel. When the axis is in the position control mode, set the working mode in the current channel to auto, single block, JOG, increment, handwheel or home.

5.2.2 Working Mode Obtaining

Function Get the status in the working mode of channel, which can be auto, single block, JOG, increment, handwheel or home.

5.2.3 Control of Feed Axis and Spindle

Function It is used to control the movement of feed axis and the spindle rotation. Set the current channel mode to JOG mode, if you press Axis selection, and positive or negative movement buttons, the moving status of the current axis will be set, thus the axis will move; if you press spindle rotation (CW or CCW) button, the rotation direction of the spindle will be set.

5.2.4 Home

FunctionObtain whether the current channel is returning home through the status register.During the process of meeting the home block, which is the first process of homing,
switching to other statuses is allowed; During the process of researching Z pulse,
which is the second process of homing, switching to other statuses is not allowed.

5.2.5 Incremental Magnification Override

Function Incremental magnification consumes two bits. 00 represents x1, 01 represents x10, 10 represents x100, and 11 represents x1000. The axis movement is controlled by the setting of above axis register.

5.2.6 Cycle Start and Feed Hold

Function When the working mode in channel is auto or single block, and is not at cycle start, set to cycle start. Set to feed hold under the cycle start. If the setting is successful, the system will be at the state of feed hold.

5.2.7 Program Name Specified by Loaded Variable

Function Write the program number to be loaded into the variable in channel 1131, the PLC sends the event 116, and the system automatically loads the program corresponding to the variable program name in channel 1131 after receiving the event 116.

6 Extension Function Module

This chapter includes:

6.1 NC Function

6.2 Functional Unit of Axis

6.3 System Function

6.1 NC Function

6.1.1 Channel Mode Setting MDST

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre 🔾
<address 2=""></address>			Constant, F, G, R,	Work mode	Post ×
			W, D, P, B	value	

FunctionSet the working mode in the current channel (Auto, Single-block, JOG,
Increment, Reference home, Handwheel, PMC)

Parameter	Working mode Parameter	Auto	Single- block	JOG	Increm- ent	Home	Hand wheel	РМС
	D2000	1	2	4	8	16	32	64

Supplemen If the axis homing is the status in channel, do not switch mode.

tary note

6.1.2 Channel Mode Getting MDGT

Format

ſ		Ì
1	MDGT	Address 1
	1010/01	Address 2

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre O
<address 2=""></address>		INT	Constant, F, G, R,	Working	Post ×
			W, D, P, B	mode value	

Function To get the working mode value of the current channel.

Parameter

Work mode	Auto	Single-	JOG	Incre-	home	Hand	РМС
Parameter		block		ment		wheel	
D2 □□□	1	2	4	8	16	32	64

Supplement ary note

 Example
 Ladder
 Image: Constrained of the second secon

If the axis homing is the status in channel, do not switch mode.

6.1.3 Mode MDI

Format

<u> </u>	MDI Add	Iress 1 -			
Parameter	Parameter	Data	Storage area	Evolution	Properties
	form	type	Storage area	Explanation	
< Address 1>					Pre O
<address 1=""></address>		INT	Constant	Channel No.	Post ×

Function To get MDI mode in the channel.

ParameterParameter 1: channel No.

6.1.4 Locking Channel MST

Format

O MST Address 1					
Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre √ Post ×

Function Lock the channel MST. When this function is turned on, all MST instructions in this channel are not available, and are directly skipped.

Example	Ladder Diagram	X36.4 MST 0
	Statement List	MST 0
	Description	When X36.4 is turned on, channel 0 is locked.

6.1.5 Cycle Start CYCLE

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre √ Post ×

Function Set the channel which needs cycle start by parameter, and perform cycle start via ACT signal.

6.1.6 Emergency Stop STOP

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre √ Post ×

Function Set the channel which needs emergency stop by parameter, and start emergency stop via ACT signal.

Example		
·	Ladder Diagram	X1.2 STOP 0
Reset	Statement List	LD X1.2 STOP 0
	Description	When X1.2 is turned on, set the channel 0 to emergency stop.

6.1.7 **RESET**

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre √ Post ×

 Function
 Set the channel which needs reset by parameter, and activate reset via ACT signal.

6.1.8 Channel Exchange CHANSW

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
< Address 1>				Set the	Pre √
<address 1=""></address>		INT	Constant	channel of	Post X
				feedhold	

Function Set the channel which needs to be exchanged by parameter, and enable the channel exchange via ACT signal.

Ladder Diagram	X36.4 CHAN 0 SW 0
Stateme nt List	LD X36.4 CHANSW 0
Descripti on	When X36.4 is turned on, set the channel 0 to the active channel.

6.1.9 Feed Hold Start HOLD

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Set the channel of	Pre √ Post ×

FunctionSet the channel which needs feed hold by parameter, and enable feed hold
through ACT signal.

6.1.10 Cycle Start LED CYCLED

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
< Address 1>				Obtain the	Pre 🔿
<auuress 1=""></auuress>		INT	Constant	channel of	Post X
				cycle start	

FunctionSet the channel where needs feed hold via parameter. If the cycle start is
successful, the output will light up the cycle start light

6.1.11 Feed Hold LED HOLDLED

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properti es
<address 1></address 		INIT	Constant	To get the channel of	Pre 🔿
		IINT	Constant	feedhold	Post v
				state.	

FunctionSet the channel where the feed hold LED needs to be lit by parameter, and light
feed hold LED through ACT signal.

Ladder Diagram	THOLDLED 0 Y36.5
	LDT
Stateme	HOLDLED 0
nt List	OUT Y36.5
Descripti	Control the feed hold LED based on the feed hold status in the channel 0.
011	

6.1.12 Block Skip (G31) ESCBLK

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	The channel where the block skip function needs to be activated.	Pre ○ Post ×
<address 2=""></address>		INT	Constant	The number of G31	

Function Set the channel where the block skip function needs to be activated by parameter, and enable this function through ACT signal.

6.1.13 Rapid Traverse Override RPOVRD

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Channel No.	Pre ○ Post ×
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Override value	

Function The channel is selected by parameter 1, override value is passed via register by parameter 2, and this function is enabled through ACT signal.

Supplementary The override value cannot be changed at the time of thread-cutting. **note**

I

6.1.14 Feedrate Override FEEDOVRD

FEED OVRD	Address 1	
	Address 2	ļ

Parameter	Parameter	Data	-		Properties
	form	type	Storage area	Explanation	
<address 1=""></address>		INT	Constant	Channel No.	Pre ○ Post ×
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Override value	

Function The channel is selected by parameter 1, override value is passed via register by parameter 2, and this function is enabled through ACT signal.

Supplementary The override value cannot be changed at the time of thread-cutting. **Note**

Ladder Diagram	T	FEED OVRD	0 R7		
Stateme nt List	LDT FEEDOVRD 0 R7				
Descripti on	Set the feedrate ove R7.	erride in the	channel 0 v	vith the value of	

6.1.15 Spindle Override SPDLOVRD

Format

Parameter	Parameter form	Data type	Storage area Explanation		Properties
<address 1=""></address>		INT	Constant	Channel No.	
<address 2=""></address>		INT	Constant	Spindle No.	Pre ○ Post ×
<address 3=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Override value	

Function The channel is selected by parameter 1, spindle No. is selected by parameter 2, and the override value is passed by parameter 3 via register. The federate override function is enabled by ACT.

Supplementary

note

The override value cannot be changed at the thread-cutting time.

Ladder Diagram	 T	SPDL OVRD	0 0 R7		
Statement List	LDT SPDLOVRD 0 0	R7			
Description	Set the No. 0 spin value of R7.	ndle override va	llue in the c	hannel 0 by the	

6.1.16 Incremental (Stepping) Magnification STEPMUL

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1></address 		INT	Constant	Axis No.	Pre 〇
< Address 2>		INT	Constant, X, Y, F, G, R, W, D, P, B	Magnificati on value	Post $ imes$

FunctionThe axis number is set by the parameter 1, the magnification value is passed by
the parameter 2 via register, and ACT enables feedrate override function.

Supplementary

note

This function can only be used in the incremental (stepping) status.

6.1.17 Dryrun DRYRUN

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>	is 1>		Constant	Pre √
		INI	Constant	Post ×

Function Press Dryrun button in the auto mode on the control panel, its indicator lamp is lit, and CNC is in dryrun status, where the feed rate specified by the program is ignored, and the coordinate axis moves at the maximum rapid traverse speed.

The actual cutting cannot be performed in the dryrun model. The purpose is to confirm the cutting path and the program.

During the process of actual cutting, this function must be turned off; otherwise, it may cause danger.

This function cannot work on thread cutting.

Parameter Parameter 1: channel No.

Ladder Diagram	Y32.2 DRY RUN 2
Statement List	DRYRUN 2
Description	When Y32.2 is turned on, the channel 2 is in dry run.

6.1.18 Block Skip SKIP

Format

Parameter	Parameter	Data	Storage area	Properties
	form	type	Storage area	
<address 1=""></address>		INIT	Constant	Pre √
		INI	Constant	Post ×

- **Function** The system can skip some specified blocks in the auto mode. If "/" is put at the start of a program block, press Block skip, then this block will be skipped and not be executed in the auto mode; if Block skip is released, "/" will not work, and this block will be implemented.
- Parameter Parameter 1: channel No.

6.1.19 User Input USERIN

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant		Pre √
<address 2=""></address>		INT	Constant		Post X
<address 3=""></address>		INT	Constant		

FunctionSet the user input. When ACT is effective, set user-defined group and bit in
the channel to 1, and the macro-variable changes accordingly.

Parameter Parameter 1: channel No.

Parameter 2: not available at present

Parameter 3: power of 2. For example, 17 means that the value of #1190 is $2^{17}=131072$.

Ladder Diagram	X31.4 0 USER 1 IN 1	
Stateme nt List	USERIN 0 1 1	
Descripti on	Vhen X31.4 is turned on, the macro-variable #1190 of user uput group which corresponds to the channel 0 is 2.	

6.1.20 User Output USEROUT

Format

Parameter	Parameter form	Data type	Storage area	Properties
		-71		
<address 1=""></address>		INT	Constant	Pre 🔿
<address 2=""></address>	None	None	None	Pre X
<address 3=""></address>		INT	Y, R	

Function

Set the user output. Set the value of macro-variable #1191in the program, which will determine the group number and position number of user-defined output. 32-bit output is defined, and four groups of 8-bit outputs are obtained. The start address of output is defined by parameter 3.

Parameter Parameter 1: channel No.

Parameter 2: not available at present.

Parameter 3: the start address of output register. The output value is 32-bit. Therefore, for y register of 8-bit, four consecutive y registers are used.

Ladder Diagram	X36.4	USER OUT	0 1 Y1	
Stateme nt List	USEROUT 0 1 Y1			
Descripti on	Y1.2 and Y1.3 will be output, and other bits of Y1 to Y4 are 0.			

6.1.21 Optional Stop SELSTOP

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>	IIII INT	INT	Constant		Pre √
		COnstant		Post ×	

Function When "optional stop" is enabled (the indicator light is on), the program stops at M01 in the auto mode.

Parameter Parameter 1: channel No.

Ladder Diagram	Y32.2 SEL 0
Statement List	SELSTOP 0
Description	When Y32.2 is turned on, the optional stop in channel 0 is effective.
6.1.22 Vector Tool Direction Setting TOOLSET

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INIT	Constant	Channel No.	Pre ×
			Constant		Post √

Function This function is generally used for 5-axis machining. Set the vector direction of the current tool in this channel to Z direction, enable this function, manually feed and retract the tool along the vector direction.

Ladder Diagram	X36.4 TOOL 0
Stateme nt List	TOOLSET 0
Descripti on	When Y32.2 is turned on, the tool direction in channel 0 is effective.

6.1.23 Vector Tool Direction Clear TOOLCLR

Format

TOOL Address 1						
Parameter	Parameter form	Data type	Storage area	Explanation	Properties	
<address 1=""></address>			Constant	Channel No.	Pre ×	
			Constant	Channel NO.	Post √	

Function This function is generally used for 5-axis machining. In this channel, Z direction is cancelled as the vector direction of the current tool. This function is used in conjunction with TOOLSET function.

Ladder Diagram	T TOOL 0
Stateme nt List	TOOLCLR 0
Descripti on	The tool direction in channel 0 is set to be invalid.

6.1.24 8-bit Nixie Tube NIXIE

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	The number to be shown by the digital tube	Pre √
<address 2=""></address>		INT	Constant	"0" indicates single byte, and "1" indicates double-byte.	Post √
<address 3=""></address>		BOOL	Y, R, W, D, B	Set the 8-bit digital tube on the panel	

Function The 8-bit digital tube on the panel displays the number of the current tool.

Ladder Diagram		NIXIE	R23 0 Y37		
Stateme nt List	NIXIE R23 0 Y37				
Descripti on	The tool number i	n R23 is dis	played to t	the digital tube.	

6.1.25 Tool Display TOOLUSE

Format

		DL Address E Address	51 52	-	
Parame	eter	Parameter form	Data type	Storage area	Properties
<addre< td=""><td>ss 1></td><td></td><td>INT</td><td>Constant, X, Y, F, G, R, W, D, P, B</td><td>Pre O</td></addre<>	ss 1>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre O
<addre< td=""><td>ss 2></td><td></td><td>INT</td><td>Constant, X, Y, F, G, R, W, D, P, B</td><td>Post ×</td></addre<>	ss 2>		INT	Constant, X, Y, F, G, R, W, D, P, B	Post ×

Function Display the tool number in the currently executed T code to the interface of CNC.

Parameter Parameter 1: channel number

Parameter: tool number

Ladder Diagram	TOOL USE R23
Statement List	TOOLUSE 0 R23
Description	The tool number in channel 0 is displayed on the interface.

6.1.26 Tool Life TOOLLIFE

Format

Parameter	Parameter	Data	Storage area	Explanation	Properties
	form	type			
<address 1=""></address>			Constant (0-3)	In the channel of	Pre ()
				<address 1="">, when</address>	FIE U
<address 2=""></address>			Constant	the times that the	
		INI		tool is installed	
<address 3=""></address>		INT	R register	reaches the times of	Deet X
			-	<address 2="">, the</address>	Post ×
				register of <address< td=""><td></td></address<>	
				3> responses once.	

Function Cumulative tool installation times

Parameter Parameter 1: channel number

Parameter 2: number of installations

Parameter 3: counting response point

				. 1
			0	
Ladder		TOOL LIFE	10	
Diagram			R23]
Statement List	TOOLIFE 0 10 R23			
Description	When the times that the tool is installed in channel 0 reaches 10 in channel 0, R23 responses once.			

6.1.27 Tool Selection Module TOOL

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	It is turned on after the target tool	Pre 🔾
<address 2=""></address>		INT	Constant	position number in <address 4=""> is found;</address>	
<address 3=""></address>		INT	Constant	otherwise, it is not turned on.	Post ×
<address 4=""></address>		INT	Constant		

Function It is turned on after the target tool position number in <address 4> is found; otherwise, it is not turned on. (The relevant parameters on magazine interface need to be set before running.)

Parameter Parameter 1: spindle tool number

Parameter 2: specified tool number

Parameter 3: alarm number

Parameter 4: target tool position number

Ladder Diagram	R154.1	TOOL	R40 R41 R42 R43	R181.1 Tool number is selected	
Statement List	TOO R40 R41 R42 R	43			
Description	When tool selection R154.1 is turned on, if the target number R43 is chosen, R181.1 is turn on.				

6.2 Functional Unit of Axis

6.2.1 Spindle JOG SPDLJOG

Format

Parameter	Parameter	Data	Storage area	Properties
	form	type		
<address 1=""></address>		INT	Constant	Pre O
<address 2=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	Post ×

Function Control spindle manually.

ParameterParameter 1: spindle numberParameter 2 : point of CW rotation

Ladder Diagram	X31.4 0 JOG X32.4
Statement List	SPDLJOG 0 X32.4
Description	When X31.4 is effective, if X32.4 is valid, the 0 axis will rotate at the default speed in the clockwise direction.

6.2.2 Spindle Control	[Servo Spindle]	SPDLBUS

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant		Pre O
<address 2=""></address>		INT	Constant		Post ×

- **Function** A spindle in a channel is set to be valid. Set the device which is set to be associated with the spindle number by the channel parameter to the spindle. For example, the logical axis number of the 0 axis in the current channel 0 is 5, (suppose No.5 axis is enabled), then the logical axis 5 is regarded as the first spindle in the current channel. The spindle is enabled to be effective by this functional module.
- Parameter Parameter 1: channel number

Parameter 2: spindle number

Ladder Diagram	X31.4
Stateme nt List	SPDLBUS 0 1
Descripti on	When X31.4 is effective, the No.1 spindle in channel 0 is controlled.

6.2.3 Spindle Control with Gear [Servo Spindle] SPDLBUS1

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre 🔿
<address 2=""></address>		INT	Constant	
<address 3=""></address>		INT	Constant, Y, G, R, W, D, B	
<address 4=""></address>		INT	Ρ	

Function Bus type spindle control with gear.

Parameter Parameter 1: channel number.

Parameter 2: spindle number.

Parameter 3: gear register, starting with 1.

Parameter 4: control parameter. The specified parameter holds the data such as maximum speed of spindle motor, initial speed and the like. Spindle control value for parameter 4 includes:

0	Maximum speed of motor
1	Minimum speed of actual measurement
2	Maximum speed of actual measurement
3	Numerator of current transmission ratio
4	Denominator of current transmission ratio

			0]	
Ladder			1		
Diagram		SPDL	1		
	X31.4	BUSI	R1		
			Р2		
				<u>.</u>	
Statement List					
	When X31.4 is eff	ective, the	current	t gear for No. 1 sp	indle
	override in channe	el 0 is in R1	L registe	er. Control param	eter is in
Description	user parameters f	rom P2. Re	efer to t	he Parameter Ma	nual for
Description	filling in paramete	ers, accord	ing to th	he actual conditio	n of
	machine.				

6.2.4 Spindle Orientation Enable SPDLORI

Format

SE	PDL	Address 1
C	JRI	

Parameter	Parameter	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INT	Constant	Axis	Pre O
				number	Post ×

FunctionSpindle orientation enable. The spindle needs to be oriented to a specified angle at
the beginning of tool changing and rigid tapping. Perform spindle orientation via
this function. The orientation angle is set by the parameter in the servo drive.

Ladder Diagram	T SPDL O
Statement List	SPDLORI 0
Description	The spindle orientation for No.0 spindle.

6.2.5 Spindle Orientation Completion SPDLOROK

Format

<u>~</u>	SPDL	Address 1			
	OROK	1 Marcoo I	i i		

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>			Constant	Pre O
			CONSIGNT	Post √

Function The spindle orientation is completed, which indicates that the spindle has been at the specified orientation angle.

Parameter Parameter 1: axis number

Ladder Diagram	T SPDL 0
Statement List	SPDLOROK 0
Description	When No.0 spindle orientation has been enabled, set R10.1 to be effective.

6.2.6 Spindle Control [DA] SPDA

Format

	172	82	10		
o		Address 1			
		Address 2			
	SPDA	Address 3			
		Address 4			
		Address 5			
23		<i>χ</i> .			
Param	eter	Parameter	Data	Storage area	Properties
		form	type	Storage area	
<addre< td=""><td>ess 1></td><td></td><td>INT</td><td>Constant</td><td>Pre O</td></addre<>	ess 1>		INT	Constant	Pre O
<address 2=""></address>			INT	Constant	
<address 3=""></address>			INIT	Constant, Y, G, R,	
				W, D, B	
<addre< td=""><td>ess 4></td><td></td><td>BOOL</td><td>Y, G, R, W, D, B</td><td>Post ×</td></addre<>	ess 4>		BOOL	Y, G, R, W, D, B	Post ×
<addre< td=""><td>ess 5></td><td></td><td>BOOL</td><td>P</td><td></td></addre<>	ess 5>		BOOL	P	

Function DA control of spindle. It is used to control the analog spindle.

Parameter Parameter 1: channel number

Parameter 2: spindle number

Parameter 3: gear register (gear starts from 1)

Parameter 4 : invalid

Parameter 5 : spindle control value includes:

0	Maximum speed of motor
1	Minimum speed of actual measurement
2	Maximum speed of actual measurement
3	Numerator of current transmission ratio
4	Denominator of current transmission ratio

	T		1	
			0	
Ladder Diagram		SPDA	R1	
			R2	
			P5	
Statement List	SPDA 1 0 R1 R2 P5			
Description Channel 1. The current gear for spindle 0 in channel 1 is i register. The reference value of spindle control is in R2. Control parameter is in P5.				

6.2.7 Zero Speed Detection for Spindle SPDLZERO

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>			Constant	Pre O
				Post ×

Function Zero speed detection for spindle.

Parameter Parameter 1: axis number

Ladder Diagram	T SPDL 1			
Statement List	SPDLZERO 1			
Description	Zero speed detection for the No.1 spindle.			

6.2.8 Spindle Speed Arrival SPDLRCH

Format

O SPI RC	DL Address	51			
Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INIT	Constant	Channel No.	Pre O
			Constant	Channel NO.	Post ×

Function To detect whether the spindle speed reaches the command speed.

6.2.9 Slave Axis Home SUBAXEN

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant	Channel number	Pre √
			Constant		Post ×

Function Enable the slave axis to return to zero. When this function is turned on, the slave axis performs reference point return to search Z pulse. Z pulse has been found, which means the reference position return of slave axis is completed. Then the master axis continues to return to zero.

Parameter Parameter 1: slave axis number

Ladder Diagram	X32.6 SUB AXEN 0
Statement List	SUBAXEN 0
Description	When X32.6 is valid, the slave axis is enabled to return to zero.

6.2.10 Release Slave Axis DESYN

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant		Pre √
					Post ×

FunctionRelease slave axis. An axis is set to the slave axis of another one by parameter.If some instructions are sent to master axis, slave axis will also get those. When the
function of slave axis release is turned on, the slave axis is disassociated with the
master axis, and doesn't receive instruction pulse of the master axis.

Parameter Parameter 1: slave axis number

6.2.11 Axis Jog JOGSW

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre O
<address 2=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	Post ×

Function Manually control the axis JOG Enable

Parameter Parameter 1: axis number

Parameter 2: positive JOG direction of axis. When 1 is set, it indicates the positive direction; when 0 is set, it indicates the negative direction.

Ladder Diagram	T JOG 0 SW X32.3
Stateme nt List	JOGSW 0 X32.3
Descripti on	When X32.3 is turned on, axis 0 is disabled to move manually in positive direction, and axis 0 is enabled to move manually in negative direction.

6.2.12 Axis Stepping STEPAXIS

Format

STEP	Address 1	1	
AXIS	Address 2		

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre 🔿
<address 2=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	Post ×

Function Enable the stepping of stepping.

Parameter Parameter 1: axis number.

Parameter 2: the direction of axis stepping. "0" represents jog in the positive direction, and "1" represents jog in the negative direction.

6.2.13 Jog Velocity JOGVEL

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre √
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Post ×

Function Manually control the jog speed.

Parameter Parameter 1: axis number

Parameter 2: axis speed, and its value can be as below:

1: Jog speed of axis

2: rapid traverse speed of axis

>2: speed (pulse/rev)

Ladder Diagram	X33.2 JOG 0 VEL R0
Statement List	JOGVEL 0 R0
Description	When X33.2 is turned on, the 0 axis runs at the speed specified in R0.

6.2.14 Home Start HOMRUN

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant		Pre √
			COnstant		Post ×

Function To start the reference point return.

Parameter Parameter 1: axis number

Ladder Diagram	HOM 1 RUN 1
Statement List	HOMRUN 1
Description	When X1.1 is turned on, the reference position return of axis 1 starts.

6.2.15 Home Start 1 HOMERUN1

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre √
<address 2=""></address>		BOOL	X, Y, F, G, R, W, D, P, B	Post ×

Function To start the reference point return.

Parameter Parameter 1: axis number

Parameter 2: the direction of reference point return.

Ladder Diagram		HOME RUNI	1 X23.3		-
Statement List	HOMERUN1				
Description	When X1.1 is turne reference point; w positive direction is of axis 0 in negative	ed on, the a hen X23.3 i s enabled; v e direction	xis 1 start s turned c when X23 is enablec	ts to return to on, the Jog of ax .3 is turned off, d.	is 0 in the jog

6.2.16 Home Approaching Switch HOMESW

Format

~	HOME	Addross 1	20		
-	SW	Address I			

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant		Pre √
			Constant		Post ×

Function The axis meets the home block.

Parameter Parameter 1: axis

Ladder Diagram	X1.4 HOME SW
Statement List	HOMESW 1
Description	X1.4 is turned on, which means the axis 1 meets the home block.

6.2.17 Homing Completion HOMLED

Format

o[HOM LED Add	dress 1	-0		
Parameter	Parameter	Data	Storage area	Explanation	Properties
	form	type	storage area	Explanation	
<address 1=""></address>		INIT	Constant		Pre √
		INT	Constant		Post √

Function Homing is completed

Parameter Parameter 1: axis number

6.2.18 Axis Enable AXEN

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre √ Post ×

Function Axis enable.

Parameter Parameter 1: axis number, can be constant and register.

Ladder Diagram	X0.1 AX EN 1
Statement List	AXEN 1
Description	When X0.1 is turned on, axis 1 is enabled.

6.2.19 Axis Ready (Bus) AXRDY

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>				Pre ×
			Constant	Post √

Function Axis is ready.

Parameter Parameter 1: axis number.

Ladder Diagram	AX 1
Statement List	AXRDY 1
Description	When the axis 1 is ready, R10.1 is set to 1.

6.2.20 Axis Lock AXISLOCK

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INIT	Constant	Pre √
			COnstant	Post ×

Function The axis is locked.

Parameter Parameter 1: axis number, can be constant and register.

Ladder Diagram	X2.0 AXIS 2 LOCK 2
Statement List	AXISLOCK 2
Description	When X2.0 is turned on, the axis 2 is locked.

6.2.21 Relative PMC Axis Traverse AXISMOVE

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Pre √
<address 2=""></address>		INT	Constant, X, Y, F, G, R, W, D, P, B	Post ×

FunctionPMC axis is a special traverse axis, which cannot be moved by the command,
and cannot be used for the interpolation. The PMC axis can only be moved by
the PLC program. This instruction is used to move the PMC axis, and specify
the relative moving distance.

Parameter Parameter 1: axis number,

Parameter 2: axis movement amount (unit 1/1000mm, or 1/1000degree).

Ladder Diagram	X2.0 AXIS 2 MOVE 2
Statement List	AXISMOVE 2 2
Description	When X2.0 is turned on, axis 2 relatively moves t2 units of the distance.

6.2.22 Absolute PMC Axis Movement AXISMVTO

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant, X, Y, F,	Pre √
			G, R, W, D, P, B	
<address 2=""></address>			Constant, X, Y, F,	Post X
			G, R, W, D, P, B	

Function This instruction is used to move the PMC axis to an absolute position.

Parameter Parameter 1: axis number

Parameter 2: the position that the axis moves (unit: 1/1000mm, or 1/1000 degree).

Ladder Diagram	X2.0 AXIS MVTO 2
Statement List	AXISMVTO 2 2
Description	When X2.0 is turned on, the axis 2 moves to the position 2.

6.2.23 The Second Soft Limit of Axis AXLMF2

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INIT	Constant, X, Y, F,	Pre √
		INT	G, R, W, D, P, B	Post ×

Function The second soft limit of the axis.

Parameter Parameter 1: axis number

6.2.24 Block Switch in Positive Limit Direction AXISPLMT

Format

AXIS	Address 1		
 PLMT			

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>			Constant	Pre √
			Constant	Post ×

Function The positive limit of the axis.

Parameter Parameter 1: axis number

Example	Ladder Diagram	X1.1 AXIS 1 PLMT 1
	Statement List	AXISNLMT 1
	Description	X1.1 being effective indicates the positive limit.

6.2.25 Block Switch in Negative Limit Direction AXISNLMT

Format

VIG		T L		
MT	Address 1			

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>			Constant	Pre √
			Constant	Post ×

Function The negative limit of the axis.

Parameter Parameter 1: axis number

Ladder Diagram	X1.2 AXIS NLMT 1
Statement List	AXISNLMT 1
Description	X1.2 being effective indicates the axis 1 meets the negative limit point.

6.2.26 Handwheel MPGSET

Format

<u></u>		Address 1
	MFG SET	Address 2
		Address 3

Parameter	Parameter	Data	Storage area	Properties
	form	type	Storage area	
<address 1=""></address>		INT	Constant	Pre √
<address 2=""></address>		INIT	Constant, X, Y, F,	
			G, R, W, D, P, B	Post X
<address 3=""></address>		INIT	Constant, X, Y, F,	1050 11
			G, R, W, D, P, B	

Function To set handwheel.

Parameter Parameter 1: handwheel number.

Parameter 2: axis number.

Parameter 3: override value.

Example _____

Ladder Diagram		MPG SET	1 R6 R7		-
Statement List	MPGSET 1 R6 R7				
Description	Handwheel 1 gets it selected by the han the handwheel 1 is	s increm dwheel 1 stored in	ental valu is stored R7.	ue. The axis numbe l in R6. Override va	er alue of

6.2.27 Servo Enable (Bus) SVSW

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INIT	Constant	Pre O
		INT	Constant	Post ×

Function Servo enable.

Parameter Parameter 1: axis number.

Ladder Diagram	SVSW 1			
Statement List	SVSW 1			
Description	Servo enable of the axis 1.			

6.2.28 Axis Working Mode AXISMODE

Format

F	AXIS MODE Addres		51 52			
Para	neter	Parameter form	Data type	Storage area	Properties	
<add< td=""><td>ress 1></td><td></td><td>INT</td><td>Constant</td><td>Pre O</td><td></td></add<>	ress 1>		INT	Constant	Pre O	
<add< td=""><td>ress 2></td><td></td><td>INT</td><td>Constant</td><td>Post ×</td><td></td></add<>	ress 2>		INT	Constant	Post ×	

Function To select the working mode of the axis.

Parameter Parameter 1: axis number.

Parameter 2: "0" is position, "1" is speed, and "2" is torque.

Ladder Diagram	AXISMODE 1 R10.1			
Statement List	AXISMODE 1 1			
Description	The working mode of axis 1 is set to the speed mode.			
6.2.29 Axis Reference REFPT

Format

	Address 1
REFPT	Address 2

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre O
<address 2=""></address>		INT	Constant	Post √

Function To confirm the reference position of axis.

Parameter Parameter 1: axis number.

Parameter 2: "2" indicates that the second reference is valid, "3" indicates that the third reference is valid, "4" indicates that the forth reference is valid, and "5" indicates that the fifth reference is valid.

ole			
		I R10.1	
	Ladder Diagram		
	Statement List	REFPT 1 2	
	Description	The second reference of the axis 1 is valid, and R10.1 is output.	

6.2.30 During Axis Home AXISHOM2

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant	Axis	Pre 🔿
			Constant	number	Post O

Function To get the home status while the axis is returning home. In the process of axis home, some operations cannot be performed, in which case the home status must be judged. The corresponding F status word is F0.2.

Example	Ladder Diagram	AXIS 0 HOM2 0
	Statement List	AXISHOM2 0
	Description	While the axis is returning home, R1.1 is output, where other manual operations are not allowed.

6.2.31 During Axis Moving AXMOVING

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant	Axis	Pre O
			Constant	number	Post O

Function To get the axis status during its movement. In the process of axis moving, some operations cannot be performed, in which case the status must be judged. The corresponding F status word is F0.0.

Ladder Diagram	AXMO VING 0
Statement List	AXMOVING 0
Description	The moving sign of axis 0 is valid. While the axis is moving, R1.1 is output.

6.3 System Function

6.3.1 Rotation ROT

Format

-	Address 1	0	
	Address 2		
ROT	Address 3		
	Address 4		

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre O
<address 2=""></address>		INIT	X, Y, F, G, R, W,	
			D, P, B	
<address 3=""></address>			X, Y, F, G, R, W,	Post 1
			D, P, B	FUSL V
<address 4=""></address>			X, Y, F, G, R, W,	
		1111	D, P, B	

- **Function** Rotation control, which is used for tool rest and the like. The output is 0 for the rotation in the clockwise direction, and the output is 1 for the rotation in the counter clockwise direction.
- Parameter Input 1: enable on/off

Input 2: starting number. If the number is 0, the position number of rotational equipment starts from 0; if the number is 1, the position number of rotational equipment starts from 1.

Input 3: Whether to select a cutter nearby. If it is 0, the cutter will be selected in the clockwise direction; if it is 1, the cutter will be selected nearby.

Input 4: target location type. When the value is 0, the current target location is counted; when the value is 1, the previous location of target is counted.

Input 5: type of counting result. The value of 0 represents the number of count locations, and the value of 1 represents the count steps.

Parameter 1: maximum quantity of tool posts.

Parameter 2: address of current position.

Parameter 2: address of target position

Parameter 4: address of count result. The meaning of count result is determined by input 4 and input 5.

6.3.2 Alarm ALARM

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INIT	INT Constant	Pre 🔿
				Post ×

Function To generate alarm.

ParameterParameter 1: alarm code. The PLC alarm code is from 1 to 256, and the prompt
number of PLC is from 501 to 884.

Example	Ladder Diagram	X3.4 ALARM 3
	Statement List	ALARM 3
	Description	When X3.4 is turned on, the alarm 3 is generated.

6.3.3 Event EVENT

Format

Parameter	Parameter form	Data type	Storage area	Properties
<address 1=""></address>		INT	Constant	Pre √
		1111	Constant	Post ×

Function To create the event object.

Parameter Parameter 1: event number

Example	Ladder Diagram	X30.4 EVENT 122
	Statement List	EVENT 122
	Description	When 30.4 is turned on, the event 122 is generated.

6.3.4 Save Data SAVEDATA

Format

O-SAVE DATA		
	·	

Parameter	Parameter	Data	Storage area	Properties
	form	type	Storage area	
None				Pre √
				Post ×

Function To save all data.

Parameter None

Ladder Diagram	
Stateme nt List	SAVEDATA
Descripti on	When X30.4 is turned on, the data which hasn't been saved before outage can be saved.

6.3.5 Reset Setting Output RSTCHK

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>		INIT	Constant	Channel No.	Pre √
			Constant	Channel NO.	Post √

Function To get panel reset signal (must be used with RSTCLR simultaneously). If some reset actions in PLC need to be performed after the reset button on the panel is pressed, use this function module. At this point, "Resetting..." will be shown on the CNC interface.

6.3.6 Reset Clear RSTCLR

Format

Parameter	Parameter form	Data type	Storage area	Explanation	Properties
<address 1=""></address>			Constant	Use it together	Pre √
			Constant	with	Post ×
				RSTCHK.	

Function After the reset actions in PLC are completed, the reset must be cleared (must be used with RSTCHK simultaneously), and the signal of completing reset is transmitted to CNC. "Reset done" will be shown on the CNC interface.

Parameter Channel number.

7 Operational Monitoring and Online

Modification for Ladder Diagram

The function of operational monitoring and online modification for the ladder diagram, which is provided by PLC edit function, will monitor changes of the status of each component in the ladder diagram, and force a modification of a component status to achieve the goals of debugging.

-nc				MDI	CH0		F <u>o</u> (X II 英	202	0-05-05	19:01:
	手动					, Int	设置	程序	诊断	维护	MDI
PLC	2		PLCiz	行监控	解锁	查找:	模糊 -	- 全局	行: 37	71/1463	列: 1
371	853.3 手动冷却	R227.0 / 冷却灯	R53.2 / 自动冷却关	R29.0 」 运行允许	R57.1 / 通道复位	R99.6 2/M30				R: ()冷	227.0) 却灯
872 -	R53.3 / 手动冷却	R227.0 冷却灯									
373	R53.0 自动冷却1开		2								
874	R53.1 自动冷却2开										
375	R227.0 冷却灯									()	10.5) 令却
376	R231.0 循环启动灯	R227.0 冷却灯	MACK (0							
377			3	7							
R53	.3 手动冷却	即 手动冷	却								
51											

Press "Ladder monitoring" on the diagnosis interface, to access the ladder diagram monitoring interface, as seen above. The buttons on this interface include Program list, Find, Disable, Enable, Undo, Lock list, Cross reference, and Return.

	Ladder diagram diagnosis: view the value of each variable, and perform
	intervention operations of component.
Program list	Display all subprogram lists
Find	Search the component or the register.
Disable	Turn off a register
Enable	Turn on a register
Undo	Restore "disable" or "enable"
Lock list	Fix the value of a register
Cross reference	View all multiplexed registers

7.1 Ladder Monitoring

LadDia Moni. Press Ladder Monitoring button to access the corresponding interface, as seen in below figure. The buttons include: Disable, Enable, Undo, Return, etc.

🔳 MainWi	ndow						×
		СНО	Machine	SET	EN 2 PROG	020-08-0 DGN	4 10:48:30 MAINT
	PLC running N	Nonitor Unlock	Search:Vag	ue+Global	Row:	1/1453	Column: 1
1 2 3 4 5 6 7 7 7						月 王 一 一 代 代	1) 調停止灯 R225.1 1) 始停止灯 R66.0 1) Ture R66.0 1) Ture R64.0) 執道次 R232.1 1) 執道称灯 R227.1 1) 減満称灯 R227.1 1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2
\$1	Prog List Find 💐	Disabled	Enabled	Undo	Lock 📚 List	Cross Ref.	⇒

Press "DGN \rightarrow Status" to view the value of each variable. User can move the cursor up and down to view variables. As seen above, the component in green indicates that this component is turned on or is valid, then user can execute the operations such as disable, enable, undo and the like.

Disabled

Disable function button. Move the cursor on the component, and press Disable button to shield the component. As shown in the below figure, press disable, the component turns red, which indicated that the component is shielded. Press Undo button to restore the function of the component, which will be covered later.

X0.0 AXIS 0	
PLMT	
X0.1 AXIS 0	
NLMT	

Enabled

Enable function button. Move the cursor on the component, press Enable button, and the component is enabled. As demonstrated below, the cursor has been moved on the component, press Enable button, the component turns green, which indicates that the component is enabled. In the below figure, X0.0 is normally open. Move the cursor on X0.1, press Enable button, the component turns green, and is switched off.

Undo

Undo function button. Move the cursor on the component, and press Undo, to undo the shielding or enabling operations described above. Press this button after Disable function is enabled, the red color on the component disappears, which indicates that the function of component is restored, as shown in the figure below.

X0.0 AXIS 0	
PLNT	
XU.I AXIS O	
NLMT	

-8	8	≻	ŧ.	
	\mathcal{V}		н.	

Return function button. Press this button to return to the interface of ladder diagram monitoring for performing other operations.

7.2 Find

Find 🐸

Press Find, then the operation interface as shown in the figure below appears, where the component can be looked up.

C				CH0	E.	8 (X	EN 2	2020-08-0	4 11:29:
JOG					Machine	SET	PROG	DGN	MAIN
JIT	PL	C running	Monitor L	Inlock	Search:Vag	ue+Globa	Row	r: 2/1453	Column:
1									R230.5
								扫	作用停止灯 R225.1
								=	(1)
									R66.0
									Ture
1									()
									轴达X R232.1
5									(<mark>1</mark>) ×10灯
i									R227.1
022.1									润滑灯 8104.7
5								11.4	Am/Jacit .
-)((·)		v	V V		v	v	W
Add	ress	instruct	output	number	Next	Prev.	Finder	Finder	

For example, type X0.0, press "Enter", the first X0.0 of the program under the cursor line can be found. See the figure as below:

		MDI	CH0		10	XIX	20	20-05-05	19:51:
手动				tat	设置	程序	诊断	维护	MDI
S10(S10)	PLC运行	监控	解锁	查找:	模糊	+ 全局	行:1	.327/1463	列:1
23 R233=									
SPE									
	-								
25 SP 510	<u> </u>								
									voo
26								(1)
26 X0.0								Z	1) 曲报闸 R0.0
26 27 XIE限位								(21 (4曲0	1) 曲报闸 R0.0) D正限位
26 27 X正限位 X0.1 28 大の原位								(\$900 \$900 \$900 \$900	1) 曲报闸 R0.0) 正限位 R1.0))))) ()
26 X00 X正限位 X01 8 X0現位 R0.0								(21 980 980	1) 曲报闸 R0.0) D正限位 R1.0))负限位 Y4.2
26 x0.0 x1正限位 x0.1 28 x5限位 R0.0 29 轴0正限位								(21 \$80 \$80 \$80	1) 曲报闸 R0.0) D正限位 R1.0))负限位 Y4.2)
27 又口 又口 又口 又口 又口 又口 又口 又 二 又 二 天 二 梁 (2 、 次 二 深 (2 、 次 二 深 (2 、 次 二 深 (2 、 次 二 深 (2 、 次 の 1 、 の 1 、 の 1 、 の 1 、 の 1 、 の 1 、 の 1 、 の 1 、 の 1 、 の 1 の の の の の の の の の の の の の								(21 480 (480 (480 (1) 曲报闸 RO.0)正限位 R1.0)负限位 Y4.2)
27 300 300 300 300 300 300 300 30								(21 \$80 (\$80 (1) 曲报闸 R0.0 } D正限位 R1.0 } D负限位 Y4.2 }

Next Prev.

The found component is covered by blue curser. If you want to continue to search, press Next or Prev., then other components with same names can be found.

The functional button of Return. Press this button to return to the interface of the ladder diagram monitoring.

7.3 Edit

User presses the corresponding functional button of Ladder Diagram Edit menu, to perform operations on the new component.

MainWind	low		CLID					×
JOG			CHU	Machine	SET	PROG	DGN	MAIN
NIT	PLC run	ning Edit U	nlock	Search:Vac	ue+Globa	Row:	2/1453	Column:
1 2 3 4 5 6 7 1 2							3 	R230.5 (1)) に同停止灯 R225.1 (1) E轴停止灯 R66.0 (1) Ture R64.0 (1) (1) (1) R227.1 (1) X10灯 R227.1 (1) X10灯 R104.7 (1) X紧刀条件
Pro Lis	g t Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	
Fin	d 🕹 DEL	FM 📚	Edit 🖌	List 🖌	Two-coil	Update	Undo	-

Straight	Straight line: insert a straight line
Open	Normally open: insert a normal-open contact
Closed	Normally closed: insert a normal-closed contact
Logic output	Logical output: insert an output
CPL output	Inverted output: insert an inverted output
Vertical	Vertical line: insert a vertical line
DEL VL	Delete vertical line: Delete a vertical line
Find	Search a component or register

HNC-8 PLC Programming Manual 7 Operational Monitoring and Online Modification for Ladder Diagram

DEL element	Delete component: delete a component or register
FM	Functional module: add an instruction module
Edit gird	Edit grid: block operation of PLC program
List edit	List edit: edit the subprogram list of PLC
Two-coil	Dual coil: edit or search coil
Update Mod.	Update modification: update after PLC modification
Undo Mod.	Undo modification: abandon the previous editing of the PLC

7.3.1 Insert Straight Line

Straight

Press the functional button of Straight Line to insert a straight line in the ladder Diagram as shown below:

	Ma <mark>inW</mark> in	dow								×
	-				CH0	l f	8 (×	EN 2	020-08-0	4 13:54:34
	JOG					Machine	SET	PROG	DGN	MAINT
INIT	1		PLC runr	ning Edit U	Inlock	Search:Vag	ue+Globa	Row:	3/1453 (Column: 3
1	P32.1		and is alre	Pady at th	e current	position!) 	R230.5 ▲ 周停止灯 R225.1) 轴停止灯 R66.0 1) Ture R64.0) 轴选法 R232.1 1) 北10灯 R227.1 1) 润海粥灯 R104.7 1) 第70条件 —
1	Pr Li	og ist	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	→ i

7.3.2 Insert Vertical Line

Vertical

Press the functional button of Vertical Line to insert a vertical line after the cursor, as shown in the figure below:

. N	MainWindow						<u></u>		×
-ne				CH0	Ę.	8 (× 1	EN 2	020-08-0	4 14:01:1
	JOG				Machine	SET	PROG	DGN	MAINT
INIT		PLC runr	n <mark>ing</mark> Edit U	Inlock	Search:Vag	ue+Globa	Row	3/1453	Column: 3
1									R230.5
								Ţ.	作用停止灯 R225.1
2								=	(1) 宇宙停止灯
			-					-	R66.0
3		-							Ture
4-									R64.0 {)
									轴选X R232.1
5									(1) ×10%T
6									R227.1
									润滑灯
7	P32.1								R104.7
000								स	公繁刀条件
1									
1	Prog List	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	

7.3.3 Delete Vertical Line

1	
	Vertical

Press the functional button of "Delete Vertical Line" to delete the vertical line after the cursor, as demonstrated below:

LI M	lainWindow						1 		×
ne Mj	JOG			CH0	Machine	SET	PROG	020-08-0 DGN	4 14:09: MAINT
INIT		PLC runn	<mark>ing</mark> Edit L	Inlock	Search:Vag	ue+Globa	Row:	4/1453	Column: •
1 2 3 4 5 6 7	P32.1	line at the		osition!				井 三 一 一 一	R2303 二 周停止灯 R225.1 1 1 二 1 二 1 二 1 二 1 二 1 二 1 二 1 二 1 二 1 二 1 二 1 二 二 二 二 二 二 二 二 二 二 二 二 二
Ŧ	Prog List	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	⇒ i

7.3.4 Delete Component

DEL element

Move the cursor on the component to be deleted, press the functional button of to delete the component in the ladder diagram.

O Before the deletion

手动 加工 设置 程序 診断 维护 M S10(S10) PLC运行 编辑 解锁 查找: 模糊 + 全局 行:1329/1464 列: 11 (1328 328 X0.1 (1490, 月20) (1490, 月20) (1490, 月20) (1490, 月20) 329 500, 月20 (1490, 月20) (1490, 月20) (1490, 月20) (1490, 月20) 330 (149, 190, 190, 190) (149, 190, 190, 190, 190, 190, 190, 190, 19
S10(S10) PLC运行 编辑 解锁 責扰 機關 + 全局 行:1329/1464 列: 1 328 ×0.1 (RL0 ×20, 用 (ND0, HCC) (ND0, HCC) 328 ×0.1 (ND0, HCC) 329 ×0.1 (ND0, HCC) 320 (ND0, HCC) (NL0, HCC) 330 (ND0, HCC) (NL0, HCC) 331 (ND2, HCC) (ND1, HCC) 332 (ND2, HCC) (ND1, HCC) 332 (ND2, HCC) (ND1, HCC) 332 (ND2, HCC) (ND1, HCC) 333 (ND2, HCC) (ND1, HCC) 334 (ND2, HCC) (ND1, HCC) 335 (ND2, HCC) (ND1, HCC) 336 (ND2, HCC) (ND1, HCC) 337 (ND2, HCC) (ND1, HCC) 338 (ND2, HCC) (ND1, HCC) 339 (ND2, HCC) (ND1, HCC)
2028 X0.1 R.0.0 R.0.0 228 K0.1 K0.0 Y4.2 480.15 #80.0 Y4.2 Y4.2 Y4.2 100 R1.0 Y4.2 Y4.2 330 R1.0 Y4.2 Y4.2 331 X0.2 R0.1 Y4.2 332 Y0.2 Y0.2 Y0.2 Y0.2 Y0.2 Y0.3 Y0.3 Y1.2
331 322
³³ 1 10.1 24 転115現位 第115現位 (4.3

• After the deletion

7.3.5 Normally-open

Open

Move the cursor to the position where the normally-open contact is to be inserted, press the functional button of "Normally open" to insert the normally-open contact at the specified position.

	MainWinc	low						_5		\times
Sinc .					CH0	E H	0 (X	EN 2	020-08-0	4 14:37:55
	JOG					Machine	SET	PROG	DGN	MAINT
INIT			PLC runn	<mark>ing</mark> Edit U	nlock	Search:Vag	ue+Globa	Row:	7/1453 (Column: 4
1-										R230.5
2									R E	時停止灯 R225.1 1 〕 語停止灯
3-										R66.0 1) Ture
4										R64.0) 轴选X
5 —										R232.1 1) x10灯
6										R227.1 1) 润滑灯
7	P32.1 ┥╱┝──									R104.7
									#2	
\$1										
1	Pro Lis	og it	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	→ I

7.3.6 Normally-closed

Closed

Move the cursor to the position where the normally-closed contact is to be inserted, press the functional button of "Normally-closed" to insert the "normally-closed" contact at the specified position, as shown in the figure below:

					×
CH0	Machine	SET	EN 2 PROG	020-08-0 DGN	4 14:37: MAINT
nlock	Search:Vag	ue+Global	Row:	7/1453 (Column:
				(R230.5
				Ħ	に開停止灯 R225.1
) ±	1) :轴停止灯
				(R66.0
					Ture R64.0
				() 轴洗X
				(R232.1
				,	x10灯
				(1)
					R104.7
- R				1.4	
	nlock	nlock Search:Vag	Nachine SET	And the search: Vague + Global Row:	Machine SET PROG DGN nlock Search:Vague+Global Row: 7/1453 (

7.3.7 Logical Output

Logic output Move the cursor to the position where the logical output needs to be inserted, press the functional button of "Logical output" to insert the logical output at the specified position in the ladder diagram, as shown in the figure below. It is important to note that pre can be added to the logical output, but post cannot. Refer to the section of programming for details.

HNC-8 PLC Programming Manual	7 Operational Monitoring and Online Modification for Ladder Diagram

	MainWindov	N					<u>1</u>		×
				CH0	E F	0 (×	EN 2	020-08-0	4 14:39:4
	JOG				Machine	SET	PROG	DGN	MAINT
INIT		PLC run	n <mark>ing Edit</mark> U	nlock	Search:Vag	<mark>ue+Glob</mark> a	Row	6/1453 (Column: 6
1									R230.5
								抖	網停止灯 R225.1
2								ŧ	1) :轴停止灯
3									R66.0
									Ture R64.0
4) 轴选X
5									R232.1 1)
									x10灯 R227.1
6									1) 润滑灯
7	P32.1								R104.7
ļ								松	紧刀条件 🔜
\$1	There is co	omponent a	t the curre	ent positio	on!				
1	Prog List	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	

7.3.8 Inverted Output

Move the cursor to the position where the inverted output needs to be inserted, press the functional button "Inverted output" to insert the inverted output at the specified position in the ladder diagram, which is illustrated by the following figure.

M III	ainWindow			- 95	8				\times
; , , ([™]) .	JOG			CH0	Machine	SET	PROG	020-08-0 DGN	4 14:48:4 MAINT
		PLC runn	ing Edit U	Inlock	Search:Vag	ue+Globa	Row	4/1453 (Column: 4
1 2 3 4 5 6 7	P32.1	ponent at	the curre	ent positi	on!				R230.5 1) 調停止灯 R225.1 1) 法時停止灯 R66.0 1) Ture R64.0) 物选X R232.1 1) x100 R227.1 1) 潤滑灯 R227.1 1) 潤湯時 R227.1 1) 二 第 R227.1 1) 二 (R227.1 1) 二 (R227.1 1) 二 (R227.1 1) (R227.4 1)
Ŧ	Prog List	Straight	Open	Closed	Logic output	CPL output	Vertical	DEL VL	⇒i

7.3.9 Functional Module

TH

Press the functional module button to access the operation interface shown as below figure, and select the functional module needed.

h					020-00-04 14.4
JOG			Machine	SET PROG	DGN MAI
LDC	LDNC	SET	RST	LDP	LDF
TMRB	STMR	CTR	CTRC	CTUD	iend
1END	2END	JMP	LBL	CALL	SP
SPE	RETN	LOOP	NEXT	ACMP	ACVT
ADD	ALARM	ALT	ASSEM	AXISEN	AXMOVING
AXISHOM2	AXISLMF2	AXISLOCK	AXISMODE	AXISMOVE	AXISMVTO
AXISNLMT	AXISRDY	AXISPLMT	BMOV	CHANSW	CMP
COD	COIN	CYCL	CYCLED	DEC	DECO
DESYN	DISAS	DIV	DRYRUN	ENCO	ESCBLK
EVENT	FEEDOVRD	FILT	FMOV	HEADSEN	HOLD
HOLDLED	HOMELED	HOMERUN	HOMERUN1	HOMESW	INC
JOGSW	JOGVEL	LT	MACK	MDGT	MDI
MDST	MGET	MOV	MPGSET	MSTLOCK	MUL
nctional comp	onent name:		Zero breakove	er	

Then hit Enter to enter the selected functional module into the ladder diagram. User can press the initial word of the component to select the relevant component.

Press functional module button again to return to the interface of operation modification.

7.3.10 Return

Press "Return" to return to the previous operation interface.

7.4 Edit Network

	VainV	Vindow						<u>9—</u> 8		\times
v c					CH0			EN 2	020-08-0	4 14:53
	JOG	i				Machine	SET	PROG	DGN	MAIN
NIT			PLC run	n <mark>ing</mark> Edit U	J <mark>nlock</mark>	Search:Vag	gue+Globa	Row:	4/1453 (Column:
1									(R230.5
~									拍	調停止灯
2									(R225.1
									+	- 湘町 テエエスJ R66.0
3 -									(1) Ture
4										R64.0
				11						轴选X
5									(R232.1
										x10灯 R227.1
6									((1) 润滑灯
4	P32.1									R104.7
Έ									权	紧刀条件
4		Insert	delete	insert	select	Copy	Shear	Paste	delete	->I

User can press the buttons listed in the below table to edit the ladder diagram.

Insert line	Insert line: insert a line before the cursor line
Delete line	Delete line: delete the cursor line
Insert column	Insert column: insert a column before the cursor column
Select network	Select network: enlarge the area the cursor covers
Copy network	
	Copy network: copy the PLC the cursor covers
Paste network	
	Paste network: paste the PLC copied or cut
Cut network	
	Cut network: cut the PLC the cursor covers
Delete network	
	Delete network: delete the PLC the cursor covers

7.4.1 Select Network

选择 网络

Move the cursor to the line that you want to select, press the functional button of Select Network, the selected line turns blue, and then press Select Network again to select the next line of the current line. It is illustrated by the following figure. You can perform the operations such as delete after selecting the line you want.

MainWind	ow			CH0		Fig. (X II 英	202	0-05-06	08:46:3
🕛 手i	动				加工	设置	程序	诊断	维护	MDI
INIT		PLC	运行编	揖 解锁	查找:	模糊 +	- 全局	行:	3/1463 歹	V: 1
1									R 19.5 R	230.5 1 1 1 225.1 1
3									۲ ۹	1) 第真 64.0
5									(\$ () 封选X 232.1 1)
6 7 7 7	L								× R (海 和 和 和 和 和 和 和 和 和 和 和 和 和	10xJ 227.1 1)))))) () () () () () () (
\$1		00/84/7	+#E \ T#	选择	复制	剪切	」 制	贴)[删除	

7.4.2 Delete Network

HNC-8 PLC Programming Manual 7 Operational Monitoring and Online Modification for Ladder Diagram

删除网络

Move the cursor to the line to be deleted, press "Select" button, the line turns blue, then press "Delete" to delete this line.

O Before the deletion

HNC-8 PLC Programming Manual 7 Operational Monitoring and Online Modification for Ladder Diagram

MainWindow			СНО	_	F (× 1 #	2020	-05-06	08-55-0
🍈 手动			CIN	加工	设置	程序	诊断	维护	MDI
\$5(\$5)	PLC	运行编辑	解锁	查找:	模糊 +	全局	行: 74	10/1460	列: 1
R114.7 738 / / / / / / / / / / / / / / / / / / /	CMP B187 R26							R1	115.0) 50502
740 范围1 Z4 R115.0 F 741 范围2 机	1221.4 R231.0 	R114.6 M32响应						R] { Z轴)	115.5 1) / 机床帧
								G30	010.13
742 Z轴 / 机床锁 R114.7	R4.2 R231.0	R114.6						报 RI) 115.6 1
742 トロション Z轴/机床锁 R114.7 Z轴/机床锁 アレーション 第114.7 アレーション 水園1 刀/ 第115.0 アレーション 水園2 アレーション 第114.7 方面2 R114.7 方面1	R4.2 R231.0 十/	R114.6 ————————————————————————————————————						、报 RJ (刀库=	, 115.6) 未退到位
x115.5 742 23a / 机床锁 R114.7 743 第114.7 范围1 701 R115.0 744 / / 上 売園2 R114.7 売園1 75 第11	R4.2 R231.0 / 奪退到位 循环启动灯	R114.6 ————————————————————————————————————							/ 警13 115.6) 未退到位

7.4.3 Move

First move the cursor to the line to be moved, then press Select Network button, this line turns blue.

L M	ainWindo	N			CH0		E (X II 英	202	0-05-06	■ ¤ 09:02:4
0	手动	J				加工	设置	程序	诊断	维护	MDI
S6((S6)		PLO	运行 编辑	員 解锁	查找:	模糊 +	全局	行: 95	59/1463	列: 1
954	R5.4	R5.5	i.							R:	1)
955	R231.0 福泽部間		R103.2	R153.0	MACK	0					89770
956											
957											
958											
959	R231.0 循环启动	MGE1	0							R: (换)	103.5) り检查
960			61								
R2	31.0 循 ³	不启动灯									-
\$1											
	•	插入行	删除行	插入列	选择网络	复制网络	剪切网络	料	贴 (删除 网络	=>1

剪切 网络 Press the functional button Paste Network to access the interface which is shown in the below figure, and the selected line disappears.

HNC-8 PLC Programming Manual

MainWindow		CH0	(۲. (×∎ 英	202	0-05-06	09:06:4
🎦 手动			加工	设置	程序	诊断	维护	MDI
S6(S6)	PLC运行 编辑	■ 解锁	查找:	模糊 +	全局	行: 9 <u></u>	55/1459	列: 1
954 R5.4 R5.5							(R:	1)
倒刀捕认 回刀捕认 8231.0 955 福环启动灯	61						り套 R: (接)	言号异常 103.5) 刀检查
R3.3 R103.5 957	R3.2 / 松刀到位 TMRB 50						R: (刀松 R: (103.6) 紧检查 108.5 1) (
959	0						14.3et	<u>ae</u> 189
960	500							
R231.0 循环启动灯								
\$1								
插入行	删除行 插入列	选择网络	复制 网络	剪切网络	粘网	贴 6	删除 网络	=>

Move the cursor to the target line, and press Paste to move the selected line to the target line.

MainWindow		CH0		E	×∏ 英	2020	0-05-06	09:09:4
🍈 手动			加工	设置	程序	诊断	维护	MDI
S6(S6)	PLC运行 编辑	解锁	查找:	模糊 +	全局	行: 96	55/1464	列: 1
963	0							
964	500							
8231.0 R5.4 965 ————————————————————————————————————	R103.2 R153.0	MACK	0					
966			68					
967 - R231.0 R5.4	R103.3 R153.1	MACK	0	2				
968			69					
969								
R231.0 循环启动灯								12
\$1								
插入行量	删除行 插入列	选择 网络	复制 网络	剪切网络	料	贴 络	删除 网络	=>

7.4.4 Copy

复制 网络 Move the cursor to the position of the line that needs to be copied, then press the functional buttons Copy Network. See as below:

				CH0		۲. (×∎英	2020	-05-06	09:13
🎒 手动					bor)	设置	程序	诊断	维护	MD
S6(S6)		PLCi	云行 编辑	■ 解锁	查找:	模糊 +	全局	行: 94	4/1464 3	列: 1
940		0								
41		200								
42 R103.7	R5:8 和21到他								الله (المتا	68.0 1 日日日日
43 F109.3										
44 R103.2 刀赛出	R103.3 	R29.0 上 运行允许	R5.1 	R153.0 ──┤/	R4.0 ————————————————————————————————————	R12.2 / 刀库正转	R12.3 一 一 一 一 一 一 一 一 一 一 一 一	R16 人 专 扣刀时	0.0 R H一(报警 他	13.2) 到刀
45 日 R13.2 何刀										
R103.3 月46 日 刀赛回	R103.2 //- 刀套出	R29.0 ————————————————————————————————————	R5.1 / 刀臂原点	R153.1 //	R4.0 ————————————————————————————————————	R12.2 / 刀库正轄	R12.3	R16 人 专 扣刀时	0.0 R 十一(报警 印	13.3) 回刀
R103.2 刀套出	Н									
1										
▲ 播	入行	删除行	插入列	选择	复制	剪切网络	粘则		删除	=>

粘贴 网络 Move the cursor to the target line, and press the functional button of paste to paste the copied line.

MainWindow			CH0		Ta (×∎ 英	202	0-05-06	09:15:
🎦 手动				加工	设置	程序	诊断	维护	MD
S6(S6)	PL	C运行 编辑	■ 解锁	查找:	模糊 +	全局	行: 94	14/1487	列: 1
940	0								
941	200								
R103.2 942	R5.3							R: (相刀	.60.0 1) 时报警
R103.3 43 月 月 刀赛回									
44 R103 2 7 万赛出 拒	R5.3 / 刀到位							(1 (相刀	60.0 1) 时报警
45									
A46 H F F F F F F F F F F F F F F F F F F	R5.4 R103. 刀确认 刀套出	2 R153.0 日本 1 倒刀延时	MACK	0					_
R103.2 刀套出									
1									
1 插入	行删除行	插入列	选择	复制	剪切	制料	贴	删除	=>1

7.4.5 Paste Network

The functional button Paste Network has been applied in section 7.4.3 and 7.4.4. Refer to the two sections for the detailed operations.

7.4.6 Insert Line

As shown in the figure below, move the cursor to the next line of the line to be inserted, press the functional button Insert Line, then the line is inserted. Note that the line is generally inserted above the cursor line.

<u>ر</u>	Beloi	re inse	rting,									
	ainWindow					-	6					<u>Θ</u>
·ne	1					CH0		i i i i i i i i i i i i i i i i i i i	×∎ 英	202	0-05-06	09:20:
\square	手动						加工	设置	程序	诊断	维护	MDI
S6(<mark>(S6)</mark>		PLC	运行	编辑	解锁	查找:	模糊 -	・全局	行: 98	84/1487	列: 1
980	R3.3 	R103.5 ————————————————————————————————————	R3.2 ──┤/├─ 松刀到位	;							R (刀松	103.6) X紧检查
981	R103.6 一 一 一 一 一 一 一 一 一 一 一 一	R103.5 换刀检查	TMRB	50	-						R (松繁	108.5 1) 检查报警
982				0								
983				500								
984	R5.5 回刀确认	R5.4 / - 倒刀确认	R103.5 — 一 一 一 一 换刀检查	<u> </u>							R ——(Л	103.7) 套检查
985	R103.7 	R103.5 换刀检查	TMRB	51	┢						R (刀套)	108.6 1) 检查报警
986				0								
R5.	5回刀确认	٨										
51												
1	ř I	私行	删除行	插入列	7IJ	选择 网络	复制 网络	剪切网络	」 新 网	贴 8	删除 网络	=>

D C . . •

I IVIa	ainWindow				CH0	1	E	XII	2020	0-05-06	09:21:0
m	手动					加工	设置	程序	诊断	维护	MDI
S6(S6)		PLC	运行	编辑解锁	查找:	模糊	+ 全局	行: 98	34/1488	列: 1
980	R3.3 	R103.5 	R3.2 / 松刀到位							R (刀札	103.6) 2)紧检查
981 -	R103.6 	R103.5 —— - 接刀检查	TMRB	50]					R (松紧	108.5 1) 检查报警
82				0							
983		6.		500							
984		Ľ									
985	R5.5 —— —— 回刀确认	R5.4 	R103.5 换刀检查							по п	103.7) 赛检查
86	R103.7 	R103.5 ————————————————————————————————————	TMRB	51						R ——(刀套	108.6 1) 检查报警
1											

• After incertir

7.4.7 Insert Column

The functional button of Insert Column is in contrast to Insert Line where the column is added before the cursor column, as shown in the figure below, press the functional button of Insert Column, then a new column is added before the cursor column.

O Before adding

	1				CH0		1 <mark>8</mark> (× II 英	2020	0-05-06	09:33:
	手动					加工	设置	程序	诊断	维护	MDI
S6(S6)		PLC	运行 组	輪輪解锁	查找:	模糊 +	全局	行: 98	5/1488 3	列: 1
980	R3.3 累刀到位	R103.5 ————————————————————————————————————	R3.2 	i.						R1 (刀松	.03.6) 紧检查
981	R103.6 / 刀松紧检查	R103.5 人力检查	TMRB	50						R1 (松家村	.08.5 1) 会查报警
982				0							
983				500							
984											
985	R5 5 回刀确认	R5.4 / - 倒刀确认	R103.5 							R1 (刀1	.03.7) 美检查
986	R103.7 	R103.5 ————————————————————————————————————	TMRB	51						(刀套柱	.08.6 1) 金童报警
R5.	5 回刀确计	Y									
51											
-	×	EX CE	ADIRA-12	tor) 70	选择	复制	剪切	1 粘	貼	删除	-51

• After adding

	1				CH0		<u>10 (</u>	×∎ 英	2020	0-05-06	09:34:2
	手动					DUL	设置	程序	诊断	维护	MDI
S6(S6)		PL	C运行 编	緝 解锁	查找:	模糊 +	全局	行: 98	5/1488 3	利: 2
980	R3.3 	R103.5 —— 换刀检查	5 R3.2 / 重 松刀到化	Ż						(刀松	.03.6) 紧检查
981	R103.6 一 一 一 一 一 一 一 一 一 一 一 一	R103. 换刀检	5 TMRE	50						R1 (松繁枝	.08.5 1) 会查报警
82				0							
983				500							
984											1
85		R55 回刀确i	R5.4 / 人 倒刀确认	R103.5 						((刀≇	.03.7) 對检查
986	R103.7 	R103.5 —— 换刀检查	5 TMRE	51						R1 ——(刀套相	.08.6 1) 全查报警
R5.	5 回刀确	U									
51			,								
	- 1				洗择	复制	前打		내	删除	2.7

7.4.8 Return

Press the functional button of Return to back to the previous interface.

7.4.9 Update Modification

更新 修改 After the ladder diagram is compiled, the current ladder diagram will be loaded into the current ladder diagram after pressing the Update Modification function key after checking.
7.4.10 Undo modification

After editing the ladder diagram, if you need to edit again, you can press this function key to cancel the editing operation of the ladder diagram.

7.5 Return

Press the functional button of Return, to return to the diagnosis interface.

8 Instruction on PLC Development

Environment

This chapter includes:

7.1 Overview

7.2 Installation of Development Environment

7.3 Development Environment Interface

7.4 Development Environment Operation

8.1 Overview

HNC-LADDER-WIN Numerical Ladder Diagram Programming Software is a latest software of PLC program development environment for Series HNC8 system. This software runs on Windows XP operating system, and can easily set up ladder diagrams by visual graph programming. It is compatible with various of PLC languages that are compliant to IEC61131-3 international standard, and is a simple, efficient, and reliable PLC development tool.

8.2 Installation of Development Environment

Take the full installation of ladder diagram development environment from the CD-ROM under the Chinese version of WindowsXP as an example to illustrate the installation of the ladder diagram development environment

- (1) Boot into Chinese WindowsXP.
- Place the disk of ladder diagram development environment in the CD-ROM drive.
- (3) Double click Setup.exe file under the directory of HCNC ladder diagram, the installation program may run automatically, and then the installation wizard appears.

(4) The greeting window appears after the installation wizard interface.

(5) Click "Next (N)", and the selection dialog displays on the screen.

(6) After doing some necessary modifications to the installation path on the selection dialog, click "Next(N)".

InstallShield Vizard	
安装状态	
华中数控梯形图 安装程序正在执行所请求的操作。	
正在安	
11%	
InstallShield	
	[取消]

(7) Then the formal installation starts, with the above displaying on the screen.

(8) After the installation is complete, the installation completion prompt box appears.

8.3 Development Environment Interface

Menu

Development Environment of ladder diagram is divided into four parts: menu, ladder diagram, statement list, and symbol table.

The bar at the top of the development environment is called menu, where every pulldown menus of ladder diagram interface are listed. Clicking a menu item shows the command options in the pulldown menu. Click a command to handle relevant operation.

There are six items in the development environment menu: file, view, tool, window, and help, which are discussed in the following:

File

The "File" menu contains the command items working on files, which mainly provide operations on files of ladder diagram with user.

New	This item is for creating a new project.	
0pen	This item is to open an existing dft file.	
Save	This item is for saving files of current window as dft files.	
Save as	The function of this item likes "save ladder diagram" item,	
	which is to save opened files, and the difference is that	
	this item is to save the opened files with new names.	
Close	This item is for closing current ladder diagram interface.	
Load dit file	This item is for opening existing dit files.	
Print	This item is for printing current window contents.	
Print preview	This item is for previewing print effect.	
Print setup	This item is to set printing parameters.	
Exit	When you select this item, the program exits.	

Edit

The "Edit" menu contains rapid operations of copy, paste and the like, of which the purpose is to improve the efficiency of writing the ladder diagram.

Cut	Cut string and element.
Сору	Copy string and element
Paste	Paste string and element
Insert row	Insert a row at the current cursor location
Delete row	Delete the row which the current cursor locates.

View

"View" menu is to control the subwindow displaying in the main window.

Ladder	To open (close) ladder diagram view.
diagram	
Statement list	To open (close) statement list view.
Symbol table	To open (close) symbol table view.
Primitive tree	To open (close) primitive tree view on the left.
Message box	To open (close) message box at the bottom.
Toolbar	To open (close) toolbar.
Status bar	To open (close) status bar.

Tool

The function of "Tool" menu is to find/replace.

Find	To search the specified string.	
Find next	To continue to search the specified string.	
Replace	To replace the specified string.	

Window

"Window" menu is used to open each window.

Overlap	To arrange subwindows in overlap.	
Tile	To arrange subwindows in tiling.	
REG	To display symbol table window.	
STL	To display statement list window.	
LADDER	To display ladder diagram window.	

Help

About NEWPLC: to display the software version.

Ladder Diagram Interface

Four parts including toolbar, primitive tree, edit window, and message box are in the ladder diagram window.

Toolbar and primitive tree can dock freely, that means, they can be put on any of the four side walls of the main window. Toolbar can be located anywhere on the desktop.

Toolbar

There are two toolbars including action bar and component bar, in the ladder diagram interface.

(1) Action bar is used to manipulate new files quickly, such as zooming, undo, redo, and so on.

(2) Component bar is used to fast add the basic input/output cell and select function module.

Primitive Tree

Primitive tree is used to select function module. Double-clicking the icon can expand and collapse the instruction tree. Select the instruction icon needed from the instruction tree.

Edit Window

Edit window is for displaying and editing the ladder diagram. The area between the left busbar and the right busbar is the editing domain of the ladder diagram, the row number you are currently editing displays on the left of the left busbar, and the comments to the meaning of output status for the current line displays on the right of the right busbar.

Message Box

While the ladder diagram is being compiled, if the statement error and syntax error which can be recognized may appear in the message box, then a message box is needed to display the errors in the conversion and output.

Statement List Interface

Toolbar and edit window are in the statement list interface.

🎟 中中數拉林形图 -	[SIL]	
111 文件(2) 编辑(2)	五音(y) 智口(y) 報助(y)	- 6 ×
	山山をもでし、東日	
AND	R3. 1	
AND	X4. 5	
AND	X5. 0	
ANI	X4.7	
ANI	R40. 1	
OUT	Y4.6	
LD	R39.6	
OR	R39. 7	
OR	R40.0	
OR	R41.2	
OR	R41.4	
OR	R41.6	
LDP	X5. 3	
OR	R71.7	
ANB		
AND	¥36. 3	
OUT	R71.7	
LD	Y36. 3	
AND	R39.6	
1018	(1999) A	₩ 数字

Toolbar

An operation toolbar is in the statement list interface.

Edit Window

Edit window is for displaying and editing statement list, and can judge the current row when the statement list is being edited.

Symbol List Interface

Symbol names and comments of relevant addresses can be defined in symbol list interface.

Selection box for register is on the left of edit window of the symbol list, and edit box for register is on the right.

The edit box for register includes number, address, symbol name and comments.

- Number: automatically generate the number of the current symbol name in all the symbol names.
- Address: the specified address.
- Symbol name: the symbol name corresponding to the specified address.
- Comments: the comments corresponding to the specified address.

8.4 Development Environment Operation

Before editing PLC, first define the symbol name for the address to be used, and annotate the address, then edit PLC in the way of ladder diagram or statement list.

Symbol List Operation

Symbol list is used to define the symbol name for the specified address, and annotate the address.

Add Symbol List

Here in X10.0 (the positive limit direction of X axis) as an example to introduce.

X10.0 is in X register. Select X register in the selection box of register. X10.0 is in X000-X0049.

regster	regster
Ξ-X	i X
X0000-X0049	X0000-X0049
X0050-X0099	X0050-X0099
X0100-X0149	X0100-X0149
X0150-X0199	
X0200-X0249	X0200-X0249
X0250-X0299	X0250-X0299
X0300-X0349	X0300-X0349
X0350-X0399	X0350-X0399
X0400-X0449	
X0500-X0511	X0500-X0511
+ Y	÷Y
· F	÷. F
÷-G	
+ R	+ R
÷. W	<u>+</u> Ж
: + · · D	
I+I− B	+ B
	1001

All the register bits and points from X0000 and X0049 may appear in the edit box of register.

编号	地址	符号名	注释	
	XO			
	X0.0			
	XO. 1			
	X0.2			
	XO. 3			
	X0.4			
	X0.5			
	XO. 6			
	XO. 7			
	X1			
	X1.0			
	X1.1			
	X1.2			
	X1.3			
	X1.4			
	X1.5			
	X1.6			
	X1.7			
	X2			
	X2.0			
	X2.1			
	X2.2			
	X2.3			
	X2.4			
	X2.5			
	X2.6			
	X2.7			
	X3			
	X3.0			
	X3.1			
	X3.2			
	X3. 3			
	X3.4			

Click "Symbol name" item at the X10.0 row three times, then the edit box pops up.

编号	地址	符号名	注释	
	X9.2			
	X9.3			
	X9.4			
	X9.5			
	X9.6			
	X9.7			
	X10			
	X10.0	2 S S S S S S S S S S S S S S S S S S S		
	X10.1			
	X10.2			
	X10.3			
	X10.4			
	X10.5			
	X10.6			
	X10.7			
	X11			
	X11.0			
	X11.1			
	X11.2			
	X11.3			
	X11.4			
	X11.5			
	X11.6			
	X11.7			
	X12			
	X12.0			
	X12.1			
	X12.2			

Type "positive X limit", and hit Enter button.

After typing the symbol name, annotate the address. The edit box will pop up, with the three-click on the "comments" item at the X10.0 row.

编号	地址	符号名	注释
	X9.2		
	X9.3		
	X9.4		
	X9.5		
	X9.6		
	X9.7		
	X10		
0	X10.0	X正限位	
	X10.1		
	X10.2		
	X10.3		
	X10.4		
	X10.5		
	X10.6		
	X10.7		
	X11		
	X11.0		
	X11.1		
	1111 0		

Type "positive X limit, active high" in the edit box, and hit Enter button.

编号	地址	符号名	注释
	X9.2		
	X9.3		
	X9.4		
	X9.5		
	X9.6		
	X9.7		
	X10		
0	X10.0	X正限位	X正限位,高电平有效
	X10.1		
	X10.2		
	X10.3		
	X10.4		
	X10.5		
	X10.6		
	X10.7		
	X11		
	X11.0		
	X11.1		
	144 0		

Then defining of the symbol name of X10, and annotating of X10.0 are complete.

Delete Symbol List

When the symbol name and comments of X10.0 are not needed, delete them.

Select "X10.0" in the column of address, and hit Delete button, to delete X10.0 from the list.

8 Instruction on PLC development Environment

编号	地址	符号名	注释
A CONTRACTOR OF	X9.2		
	X9.3		
	X9.4		
	X9.5		
	X9.6		
	X9.7		
	X10		
0	X10.0	X正限位	X正限位,高电平有效
	X10.1		
	X10.2		
	X10.3		
	X10.4		
	X10.5		
	X10.6		
	X10.7		
	X11		
	X11.0		
	X11.1		
	X11.2		
	X11.3		
1			

Ladder Diagram Operation

The ladder diagram is composed of rows which themselves have up to 10 cells.

Inserting Component

Inserting components can be separated into two types: inserting basic components and inserting functional components.

O Inserting basic components

(1) When you want to insert basic component, first select a position on the ladder diagram.

(2) Click the basic component to be inserted on the toolbar.

(3) Then the basic component is inserted in the ladder diagram.

O Inserting functional components

(1) Select the functional components needed from the primitive tree.

Or select it from the selection box of component on the toolbar.

(2) Double-left click the ladder diagram, then the functional component is inserted.

Deleting Component

Select the component to be deleted in the ladder diagram, and hit Delete button to delete it.

Deleting Multi-row

Select the rows needed to be deleted. (Drag the mouse to select the area to be deleted)

Hit Delete button to delete the selected area.

Cutting, Copying and Pasting Component

First select a component in the ladder diagram.

1	
2	
3	

Then choose "Cut" or "Copy" in the "Edit" menu. Or right-click the component to be cut or copied, and select "Cut" or "Copy".

O The first way

• The second way

At last, paste the component on other locations.

Cutting, Copying and Pasting Multi-row

The first step: drag the mouse to select the rows to be cut or copied.

The second step: click "Cut" or "Paste" in the menu. Or right-click the component to be cut or copied, and click "Cut" or "Paste".

编辑(E) 3	査看 (V)	工具(0)
剪切(I)	Ctrl+X	
复制(C)	Ctrl+C	
粘贴(E)	Ctrl+V	8
插入行	Ctrl+In	nsert
删除行	Ctrl+De	elete

The third step: select somewhere on the ladder diagram.

The forth step: Click "Paste"

Insert Row

Delete Row

Can delete a row selected in the diagram.

Undo

Using this button on the toolbar to undo the previous operations

Redo

Select this button on the toolbar to recover the undone operations.

Conversion

Using this button to convert the current ladder diagram to the corresponding statement list. If there are errors in the ladder diagram, the message box showing error information will pop up.

Output

Using this button to convert the current ladder diagram to the corresponding statement list, and output the plc.dit file (execution file of ladder diagram). If there are errors in the ladder diagram, the message box showing error information will pop up.

Statement List Operation

Edit

In the statement list, type characters directly to edit the statement list.

🛯 华中教控	梯形图 -	[STL]							
文件 (2)	编辑(图)	查看(V) *	窗口())	帮助(<u>H</u>)				
		6	🖘	2		3	转	出	
10	1 x0	. 0							

After a line of statement has been typed and the cursor is moved away, the system will check and arrange the line.

🔤 华中教祖	2梯形图 -	[STL]						
把 文件 (P)	编辑(E)	查看(V) 窗	口()) 帮助	(H)				
	۲ ビ	B 🙆		Û	3	转	出	
LI	D	Х	0.0					

If there are errors in this line, the statement list will annotate the errors.

🔤 华中教	空梯形	图 -	[STI	L)	 				
響 文件(E)	编辑	(E) 🗄	查看(Y) 窗	帮助	(H)			
		X	Ð	6	-		3	转	出
\times 1	d :	x0.							

Cut, Copy and Paste

ie mouse to ui	ig on the statement list, to selec	10
🔤 华中教控梯形图	- [STL]	
·····································	查看(V) 窗口(W) 帮助(H)	
0 🖆 💾 🌡	🗎 😩 今 🧼 🕑 孝 😆	Ш
OUT	Y3.7	
LD	R59.0	
ORI	R59.0	
OUT	R59.0	
LDT		
OUT	R0. 2	
LDT		
OUT	Y31.3	

Use the mouse to drag on the statement list, to select some statements.

Then use Cut, Copy and Paste in the menu, to work accordingly.

Conversion

Select this button on the toolbar, to convert the current statement list to the corresponding ladder diagram.

Output

Hit this button on the toolbar to convert the current ladder diagram to the corresponding statement list, and output the plc.dit file (execution file of ladder diagram).

Appendix A

O Panel of 818A lathe system

	0	1	2	3	4	5	6	7
X480	Auto	Single block	JOG	Increment	Reference point return	Chuck release/ clamping	Internal/ External clamping	Dry run
X481	Block skip	Optional stop	MST Lock	Machine Lock	Tailstock loosening/ tightening	Hydraulic start	Feed hold II	Manual tool change
X482		—X		x1	x10	x100	x1000	Lamp
X483	Protective door	—Z	Fast forward	+Z	Spindle Jog	Cooling	Lubrication	Spindle upshift
X484	Chip removal CW	Chip removal CCW		+X		Spindle CW	Spindle stop	Spindle CCW
X485	Spindle downshift		Overtravel release					
X486	Rapid traver	rse override			Cycle start	Feed hold		
X487	Spindle ove	rride						
X488	Handwheel	emergency stop	, Handwheel a	axis selection,	and Handwhe	el magnificat	on	
X489	Feedrate ov	erride						
X490 X491	Incremental	pulse per cycle	by handwhee	1				

• Panel of 818A milling system

	0	1	2	3	4	5	6	7
X480	Auto	Single block	JOG	Increment	Reference position return	Tool change permission	Tool clamping	Dry run
X481	Block skip	Optiona l stop	Z-axis lock	Machine Lock	Protective door	Lamp	Feed hold II	Manual tool change
X482	+4	+Z	—Y	x1	x10	x100	x1000	F1
X483	F2	+X	Fast forward	—x	Spindle orientation	Spindle Jog	Spindle brake	Cooling
X484	F3	F4	+Y	—Z	4	Spindle CW	Spindle stop	Spindle CCW
X485	Lubrication		Overtravel release					
X486	Rapid traver	rse override			Cycle start	Feed hold		
X487	Spindle over	rride						
X488	Handwheel	emergency sto	op, Handwhee	l axis selectio	n and Handwhe	el magnification	1	
X489	Feedrate over	erride						
X490 X491	Incremental	pulse per cyc	le for handwh	eel				

	0	1	2	3	4	5	6	7
X480	Auto	Single block	JOG	Increment	Reference position return	Chuck clamping	Tailstock loosening /tightening	Dry run
X481	Block skip	Optional stop	MST Lock	Machine Lock	Center rest	Tailstock joint	Feed hold Ⅱ	Manual tool change
X482				0%	25%	Spindle CW	Spindle stop	Spindle CCW
X483	Lamp	+C	—Y		50%	100%	Spindle Jog	Spindle upshift
X484	Spindle downshift	Protective door	—x	Fast forward	+X	F1	F2	Cooling
X485	Lubrication	Hydraulic start	Auto power off		+Y	—С	F3	F4
X486	Chip removal CW	Chip removal stop	Chip removal CCW	Overtravel release	Cycle start	Feed hold		
X487	Spindle overri	de						
X488	Handwheel en	nergency stop, H	Handwheel ax	is selection, a	nd Handwheel	magnificatio	n	
X489	Feedrate over	ride						
X490	Incremental p	ulse per cycle fo	or handwheel					
X491								

O Panel of 818B milling system

	0	1	2	3	4	5	6	7
X480	Auto	Single block	JOG	Increment	Reference position return	Tool change permission	Tool clamping	Dry run
X481	Block skip	Optional stop	Z- axis lock	Machine Lock			Magazine CW	Magazine CCW
X482	X	Y	Z	0%	25%	Spindle CW	Spindle stop	Spindle CCW
X483	Lamp	A	В	С	50%	100%	Spindle orientation	Spindle Jog
X484	Spindle brake	Protective door	7	8	9	F1	F2	Cooling
X485	Lubrication	Chip blowing	Auto power off		Fast forward	+	F3	F4
X486	Chip removal CW	Chip removal stop	Chip remova 1 CCW	Overtravel release	Cycle start	Feed hold		
X487	Spindle over	rride						
X488	Handwheel	emergency stop	, Handwhee	l axis selectio	n, and Handw	heel magnificat	ion	
X489	Feedrate over	erride						
X490 X491	Incremental	pulse per cycle	for handwh	eel				